一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。
- 图是连通图;
- 图中包含了了N个顶点;
- 图中边的数量等于N-1条边.
假设有如下图


Prim算法
- 输入:一个加权连通图,其中顶点集合为V,边集合为E;
- 初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
- 重复下列操作,直到Vnew = V: a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一); b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
- 输出:使用集合Vnew和Enew来描述所得到的最小生成树。
简单的说,从所有可选结点 (所有可以联通到已选结点并且未被选择的结点) 中再选择权重最小的结点,并将其加入已选节点;重复操作,直到所有节点被选择完毕,全部节点走通。
不懂?没事,跟着下面来一遍 以上图为例
注意⚠️:绿色代表已联通,红色代表下一轮的可选边和结点,黑色线表示不可联通或暂未联通
第一轮 从V0开始
可选节点为V1 V5,从可选结点中选择权重最小的,所以V0->V1,V1被选择

第二轮
上一轮中,V0 V1已选,所以接下来能够联通到V0 V1的均为可选结点,可选节点:V2 V8 V6 V5;权重最小的是V0->V5,所以V5被选择,剩下红色待选

第三轮
上图可选节点:V2 V8 V6 V4, 其中V1->V8权重最小,V8被选择,剩下红色待选

第四轮
上图可选结点为:V2 V3 V6 V4, V8->V2 权重最小,V2被选择,剩下红色待选

第五轮
上图可选节点:V3 V6 V4 ,其中V1->V6权重最小,V6被选择,剩下红色待选

第六轮
上图可选节点:V3 V7 V4, 其中V6->V7权重最小,V7被选择,剩下红色待选

第七轮
上图只剩V3 和 V4 V7->V4权重最小,所以V4被选择,还剩V3

第八轮
V2 V8 V6 V7 V4 都可以连接到V3,只有V7->V3权重最小,所以最终结果如下

代码实现思路
- 定义2个数组; adjvex ⽤用来保存相关顶点下标; lowcost 保存顶点之间的权值
- 初始化2个数组, 从v0开始寻找最小生成树, 默认v0是最⼩生成树上第一个顶点 3. 循环lowcost 数组,根据权值,找到顶点 k;
- 更新lowcost 数组
- 循环所有顶点,找到与顶点k 有关系的顶点. 并更更新lowcost 数组与adjvex 数组; 注意: 更新lowcost 数组与adjvex 数组的条件:
- 与顶点k 之间有连接
- 当前结点 j 没有加入过最⼩小⽣生成树;
- 顶点 k 与 当前顶点 j 之间的权值 小于 顶点j 与其他顶点 k 之前的权值. 则更新. 简单说就是要⽐较之前存储的值要小,则更新;
定义
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
核心函数
void MiniSpanTree_Prim(MGraph G)
{
int min, i, j, k;
int sum = 0;
/* 保存相关顶点下标 */
int adjvex[MAXVEX];
/* 保存相关顶点间边的权值 */
int lowcost[MAXVEX];
/* 初始化第一个权值为0,即v0加入生成树 */
/* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
lowcost[0] = 0;
/* 初始化第一个顶点下标为0 */
adjvex[0] = 0;
//1. 初始化
for(i = 1; i < G.numVertexes; i++) /* 循环除下标为0外的全部顶点 */
{
lowcost[i] = G.arc[0][i]; /* 将v0顶点与之有边的权值存入数组 */
adjvex[i] = 0; /* 初始化都为v0的下标 */
}
//2. 循环除了下标为0以外的全部顶点, 找到lowcost数组中最小的顶点k
for(i = 1; i < G.numVertexes; i++)
{
/* 初始化最小权值为∞, */
/* 通常设置为不可能的大数字如32767、65535等 */
min = INFINITYC;
j = 1;k = 0;
while(j < G.numVertexes) /* 循环全部顶点 */
{
/* 如果权值不为0且权值小于min */
if(lowcost[j]!=0 && lowcost[j] < min)
{
/* 则让当前权值成为最小值,更新min */
min = lowcost[j];
/* 将当前最小值的下标存入k */
k = j;
}
j++;
}
/* 打印当前顶点边中权值最小的边 */
printf("(V%d, V%d)=%d\n", adjvex[k], k ,G.arc[adjvex[k]][k]);
sum+=G.arc[adjvex[k]][k];
/* 3.将当前顶点的权值设置为0,表示此顶点已经完成任务 */
lowcost[k] = 0;
/* 循环所有顶点,找到与顶点k 相连接的顶点
1. 与顶点k 之间连接;
2. 该结点没有被加入到生成树;
3. 顶点k 与 顶点j 之间的权值 < 顶点j 与其他顶点的权值,则更新lowcost 数组;
*/
for(j = 1; j < G.numVertexes; j++)
{
/* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
/* 将较小的权值存入lowcost相应位置 */
lowcost[j] = G.arc[k][j];
/* 将下标为k的顶点存入adjvex */
adjvex[j] = k;
}
}
}
printf("sum = %d\n",sum);
}
创建测试用例
void CreateMGraph(MGraph *G)/* 构件图 */
{
int i, j;
/* printf("请输入边数和顶点数:"); */
G->numEdges=15;
G->numVertexes=9;
for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for ( j = 0; j < G->numVertexes; j++)
{
if (i==j)
G->arc[i][j]=0;
else
G->arc[i][j] = G->arc[j][i] = INFINITYC;
}
}
G->arc[0][1]=10;
G->arc[0][5]=11;
G->arc[1][2]=18;
G->arc[1][8]=12;
G->arc[1][6]=16;
G->arc[2][8]=8;
G->arc[2][3]=22;
G->arc[3][8]=21;
G->arc[3][6]=24;
G->arc[3][7]=16;
G->arc[3][4]=20;
G->arc[4][7]=7;
G->arc[4][5]=26;
G->arc[5][6]=17;
G->arc[6][7]=19;
for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] =G->arc[i][j];
}
}
}
kruskal算法
还是这个图

算法思路
- 将邻接矩阵 转化成 边表数组;
- 对边表数组根据权值按照从小到大的顺序排序;
- 遍历所有的边, 通过parent 数组找到边的连接信息; 避免闭环问题;
- 如果不存在闭环问题,则加入到最⼩⽣成树中. 并且修改parent 数组
注意⚠️ parent 数组的目的是为了判断当前的边是否会构成闭环
1、将邻接矩阵转化成边表数组,对边表数组根据权值按照从⼩小到⼤大的顺序排序;
规定小下标到大下标的方向

2、开始生成:条件是思路中的3和4
按照上面的排序,V4->V7
不存在闭环,所以可以联通

V2->V8
不存在闭环,可以联通

V0->V1
不存在闭环,可以联通

V0->V5
不存在闭环,可以联通

V1->V8
不存在闭环,可以联通

V3->V7
不存在闭环,可以联通

V1->V6
不存在闭环,可以联通

V5->V6
存在闭环,不可联通!! V0 V1 V6 V5 成闭环

V1->V2
存在闭环,不可联通!! V1 V2 V8 成闭环

V6->V7
不存在闭环,可以联通

此时,所有结点均以走通结束
代码
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXEDGE 20
#define MAXVEX 20
#define INFINITYC 65535
typedef int Status;
typedef struct
{
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
}MGraph;
/* 对边集数组Edge结构的定义 */
typedef struct
{
int begin;
int end;
int weight;
}Edge ;
排序
/* 交换权值以及头和尾 */
void Swapn(Edge *edges,int i, int j)
{
int tempValue;
//交换edges[i].begin 和 edges[j].begin 的值
tempValue = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = tempValue;
//交换edges[i].end 和 edges[j].end 的值
tempValue = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = tempValue;
//交换edges[i].weight 和 edges[j].weight 的值
tempValue = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = tempValue;
}
/* 对权值进行排序 */
void sort(Edge edges[],MGraph *G)
{
//对权值进行排序(从小到大)
int i, j;
for ( i = 0; i < G->numEdges; i++)
{
for ( j = i + 1; j < G->numEdges; j++)
{
if (edges[i].weight > edges[j].weight)
{
Swapn(edges, i, j);
}
}
}
printf("边集数组根据权值排序之后的为:\n");
for (i = 0; i < G->numEdges; i++)
{
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
/// 查找连线顶点的尾部下标,帮助判断是否会构成闭环
/// @param parent 存储结点互相关联的数组
/// @param f 定点下标
int Find(int *parent, int f)
{
while ( parent[f] > 0)
{
f = parent[f];
}
return f;
}
/* 生成最小生成树 */
void MiniSpanTree_Kruskal(MGraph G)
{
int i, j, n, m;
int sum = 0;
int k = 0;
/* 定义一数组用来判断边与边是否形成环路
用来记录顶点间的连接关系. 通过它来防止最小生成树产生闭环;*/
int parent[MAXVEX];
/* 定义边集数组,edge的结构为begin,end,weight,均为整型 */
Edge edges[MAXEDGE];
/*1. 用来构建边集数组*/
for ( i = 0; i < G.numVertexes-1; i++)
{
for (j = i + 1; j < G.numVertexes; j++)
{
//如果当前路径权值 != ∞
if (G.arc[i][j]<INFINITYC)
{
//将路径对应的begin,end,weight 存储到edges 边集数组中.
edges[k].begin = i;
edges[k].end = j;
edges[k].weight = G.arc[i][j];
//边集数组计算器k++;
k++;
}
}
}
//2. 对边集数组排序
sort(edges, &G);
//3.初始化parent 数组为0. 9个顶点;
// for (i = 0; i < G.numVertexes; i++)
for (i = 0; i < MAXVEX; i++)
parent[i] = 0;
//4. 计算最小生成树
printf("打印最小生成树:\n");
/* 循环每一条边 G.numEdges 有15条边*/
for (i = 0; i < G.numEdges; i++)
{
//获取begin,end 在parent 数组中的信息;
//如果n = m ,将begin 和 end 连接,就会产生闭合的环.
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
//printf("n = %d,m = %d\n",n,m);
/* 假如n与m不等,说明此边没有与现有的生成树形成环路 */
if (n != m)
{
/* 将此边的结尾顶点放入下标为起点的parent中。 */
/* 表示此顶点已经在生成树集合中 */
parent[n] = m;
/*打印最小生成树路径*/
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
sum += edges[i].weight;
}
}
printf("sum = %d\n",sum);
}