树的定义
树是n个结点的有限集合,只要有根结点都可称为树

左图是一个有且只有一个根结点的树;右图是有多个N结点的一般树
以下是一般树,结构中三个度——高度,深度,层数

其中不为0的结点成为叶子如图 K J M J,B的双亲结点为A,E,F是兄弟结点
高度:当前结点到最长的叶子结点的长度
深度:结点到叶子结点最长的边数
层:从上往下数有多少层
二叉树
二叉树是不可能存在度树大于2的结点,是有左右顺序之分,左子树,右子树
- 二叉树的五种形态





其中图2为左斜树,图5为右斜树
- 特殊二叉树之满二叉树,所有结点都存在左子树和右子树,所有终断结点都处于同一层

- 特殊⼆叉树—完全⼆叉树,

- 特殊⼆叉树—完全⼆叉树的判断,一个满二叉树一定是一个完全二叉树


⼆叉树的性质
- 在二叉树的第i层上最多有2i-1个结点
- 深度为K的二叉树最多有2-1个结点(K>=1)
- 对于任何一颗二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1;
- 具有n个结点的完全二叉树深度为(log2(n))+1
- 对于具有n个结点的完全二叉树,如果按照从上至下和从左至右的顺序对二叉树的所有结点从1开始编号,则对于任意的序号结点有:
- 如果i > 1,那么序号为i的结点的双亲结点序号为i / 2
- 如果i = 1,那么序号为i的结点为根结点,无双亲结点
- 如果2i / <= n,那么序号为i的结点的左孩子结点序号为2i
- 如果2i > n,那么序号为i的结点无左孩子
- 如果2i + 1 <= n,那么序号为i的结点右孩子序号为2i + 1;
- 如果2i + 1 > n,那么序号为i的结点无右孩子
⼆叉树的顺序存储结构分析
顺序存储是用来存储一个完全二叉树


二叉树的实现
- visit
- 构造空二叉树T,由于T是不可变数组
- 判断⼆叉树是否为空
- 获取⼆叉树的深度
- 返回处于位置e(层,本层序号)的结点值
- 获取⼆叉树跟结点的值
- 给处于位置e的结点赋值
- 获取e的双亲
- 获取某个结点的左孩⼦
- 获取某个结点的右孩⼦
- 获取结点的左兄弟
- 获取结点的右兄弟
⼆叉树的遍历⽅法—前序遍历
规则:若⼆叉树为空,则空操作返回;否则先访问根结点,然后前序遍历左⼦树,在前序遍历右⼦树

⼆叉树的遍历⽅法—中序遍历
规则:若⼆叉树为空,则空操作返回;否则从根结点开始(注意并不是先访问根结点),中序遍历根结点的左⼦树,然后是访问根结点,最后中序遍历右⼦树.

⼆叉树的遍历⽅法—后序遍历
规则:若⼆叉树为空,则空操作返回;否则从左到右先叶⼦后结点的⽅式遍历左右⼦树,最后访问根结点

⼆叉树的遍历⽅法—层序遍历
规则:若⼆叉树为空,则空操作返回;否则从树的第⼀层,也是就是根结点开始访问,从上⽽下逐层遍历,在同⼀层中,按从左到右的顺序对结点逐个访问.

代码实现
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100
/* 存储空间初始分配量 */#define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */
typedef int Status;
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int CElemType; /* 树结点的数据类型,目前暂定为整型 */
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点 */
CElemType Nil = 0; /*设整型以0为空 或者以 INT_MAX(65535)*/
typedef struct {
int level; //结点层
int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
#pragma mark -- 二叉树的基本操作
//1. visit
Status visit(CElemType c){
printf("%d ",c);
return OK;
}
//2 构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
for (int i = 0; i < MAX_TREE_SIZE; i++) {
//将二叉树初始化值置空
T[i] = Nil;
}
return OK;
}
//3. 按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
Status CreateBiTree(SqBiTree T){
int i = 0;
//printf("按层序输入结点的值(整型),0表示空结点, 输入999结束.结点数<=%d\n",MAX_TREE_SIZE);
/*
1 -->1
2 3 -->2
4 5 6 7 -->3
8 9 10 -->4
1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
*/
while (i < 10) {
T[i] = i+1;
printf("%d ",T[i]);
//结点不为空,且无双亲结点
if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
printf("出现无双亲的非根结点%d\n",T[i]);
exit(ERROR);
}
i++;
}
//将空赋值给T的后面的结点
while (i < MAX_TREE_SIZE) {
T[i] = Nil;
i++;
}
return OK;
}
//如果想要2个函数的结果一样,但是目的不同;
//在顺序存储结构中, 两个函数完全一样的结果
#define ClearBiTree InitBiTree
/*4 判断二叉树是否为空
初始条件: 二叉树已存在
操作结果: 若T为空二叉树,则返回TRUE,否则返回FALSE;
*/
Status BiTreeEmpty(SqBiTree T){
//根结点为空,则二叉树为空
if (T[0] == Nil)
return TRUE;
return FALSE;
}
/*5 获取二叉树的深度
初始条件: 二叉树已存在
操作结果: 返回二叉树T深度;
*/
int BiTreeDepth(SqBiTree T){
int j = -1;
int i;
//找到最后一个结点 //MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
if (T[i] != Nil)
break;
}
do {
j++;
} while ( powl(2, j) <= i); //计算2的次幂
return j;
}
/*6 返回处于位置e(层,本层序号)的结点值
初始条件: 二叉树T存在,e是T中某个结点(的位置)
操作结构: 返回处于位置e(层,本层序号)的结点值
*/
CElemType Value(SqBiTree T,Position e){
/*
Position.level -> 结点层.表示第几层;
Position.order -> 本层的序号(按照满二叉树给定序号规则)
*/
//pow(2,e.level-1) 找到层序
printf("%d\n",(int)pow(2,e.level-1));
//e.order
printf("%d\n",e.order);
//4+2-2;
return T[(int)pow(2, e.level-1)+e.order-2];
}
/*7 获取二叉树跟结点的值
初始条件: 二叉树T存在
操作结果: 当T不空,用e返回T的根,
返回OK; 否则返回ERROR
*/
Status Root(SqBiTree T,CElemType *e){
if (BiTreeEmpty(T)) {
return ERROR;
}
*e = T[0];
return OK;
}
/* 8 给处于位置e的结点赋值
初始条件: 二叉树存在,e是T中某个结点的位置
操作结果: 给处于位置e的结点赋值Value;
*/
Status Assign(SqBiTree T,Position e,CElemType value){
//找到当前e在数组中的具体位置索引
int i = (int)powl(2, e.level-1)+e.order -2;
//叶子结点的双亲为空
if (value != Nil && T[(i+1)/2-1] == Nil) {
return ERROR;
}
//给双亲赋空值但是有叶子结点
if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
return ERROR;
}
T[i] = value;
return OK;
}
/*9 获取e的双亲;
初始条件: 二叉树存在,e是T中的某一个结点
操作结果: 若e是T的非根结点, 则返回它的双亲,否则返回"空"
*/
CElemType Parent(SqBiTree T, CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
//找到e
if (T[i] == e) {
return T[(i+1)/2 - 1];
}
}
//没有找到
return Nil;
}
/* 10 获取某个结点的左孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
*/
CElemType LeftChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+1];
}
}
//没有找到
return Nil;
}
/* 11 获取某个结点的右孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
*/
CElemType RightChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+2];
}
}
//没有找到
return Nil;
}
/* 12 获取结点的左兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
*/
CElemType LeftSibling(SqBiTree T,CElemType e){
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为偶数(是右孩子) */
if(T[i] == e && i%2 == 0)
return T[i-1];
return Nil; /* 没找到e */
}
/* 13 获取结点的右兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
*/
CElemType RightSibling(SqBiTree T,CElemType e){
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为奇数(是左孩子) */
if(T[i]==e&&i%2==1)
return T[i+1];
return Nil; /* 没找到e */
}
/*14 二叉树的遍历、 层序遍历二叉树*/
void LevelOrderTraverse(SqBiTree T){
int i = MAX_TREE_SIZE-1;
//找到最后一个非空结点的序号
while (T[i] == Nil) i--;
//从根结点起,按层序遍历二叉树
for (int j = 0; j <= i; j++)
//只遍历非空结点
if (T[j] != Nil)
visit(T[j]);
printf("\n");
}
/*15 前序遍历二叉树 */
void PreTraverse(SqBiTree T,int e){
//打印结点数据
visit(T[e]);
//先序遍历左子树
if (T[2 * e + 1] != Nil) {
PreTraverse(T, 2*e+1);
}
//最后先序遍历右子树
if (T[2 * e + 2] != Nil) {
PreTraverse(T, 2*e+2);
}
}
Status PreOrderTraverse(SqBiTree T){
//树不为空
if (!BiTreeEmpty(T)) {
PreTraverse(T, 0);
}
printf("\n");
return OK;
}
/*16 中序遍历 */
void InTraverse(SqBiTree T, int e){
/* 左子树不空 */
if (T[2*e+1] != Nil)
InTraverse(T, 2*e+1);
visit(T[e]);
/* 右子树不空 */
if (T[2*e+2] != Nil)
InTraverse(T, 2*e+2);
}
Status InOrderTraverse(SqBiTree T){
/* 树不空 */
if (!BiTreeEmpty(T)) {
InTraverse(T, 0);
}
printf("\n");
return OK;
}
/*6.17 后序遍历 */
void PostTraverse(SqBiTree T,int e)
{ /* 左子树不空 */
if(T[2*e+1]!=Nil)
PostTraverse(T,2*e+1);
/* 右子树不空 */
if(T[2*e+2]!=Nil)
PostTraverse(T,2*e+2);
visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
if(!BiTreeEmpty(T)) /* 树不空 */
PostTraverse(T,0);
printf("\n");
return OK;
}
int main(int argc, const char * argv[]) {
Status iStatus; Position p; CElemType e; SqBiTree T;
InitBiTree(T);
CreateBiTree(T);
printf("建立二叉树后,树空否?%d(1:是 0:否) \n",BiTreeEmpty(T));
printf("树的深度=%d\n",BiTreeDepth(T));
p.level=3;
p.order=2;
e=Value(T,p);
printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
iStatus = Root(T, &e);
if (iStatus) {
printf("二叉树的根为:%d\n",e);
}else
{
printf("树为空,无根!\n");
}
//向树中3层第2个结点位置上结点赋值99
e = 99;
Assign(T, p, e);
//获取树中3层第2个结点位置结点的值是多少:
e=Value(T,p);
printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
//找到e这个结点的双亲;
printf("结点%d的双亲为%d_",e,Parent(T, e));
//找到e这个结点的左右孩子;
printf("左右孩子分别为:%d,%d\n",LeftChild(T, e),RightChild(T, e));
//找到e这个结点的左右兄弟;
printf("结点%d的左右兄弟:%d,%d\n",e,LeftSibling(T, e),RightSibling(T, e));
Assign(T, p, 5);
printf("二叉树T层序遍历:");
LevelOrderTraverse(T);
printf("二叉树T先序遍历:");
PreOrderTraverse(T);
printf("二叉树T中序遍历:");
InOrderTraverse(T);
printf("二叉树T后序遍历:");
PostOrderTraverse(T);
return 0;
}
打印结果:
