二叉树的应用-哈夫曼编码

445 阅读4分钟

哈夫曼编码

举个栗子

构建哈夫曼树

可以发现:

实现


typedef struct HaffNode{
    int weight;
    int flag;
    int parent;
    int leftChild;
    int rightChild;
}HaffNode;

typedef struct Code//存放哈夫曼编码的数据元素结构
{
    int bit[MaxBit];//数组
    int start;  //编码的起始下标
    int weight;//字符的权值
}Code;

/*
哈夫曼树的实现思路路:

1. 获取根据权值构建的哈夫曼树
2. 循环遍历[0,n]个结点;
3. 创建临时结点cd ,从根结点开始对⻬齐进⾏行行编码,左孩⼦子为0,右孩⼦子为1;
4. 将编码后的结点存储haffCode[i]
5. 设置HaffCode[i]的开始位置以及权值;
*/
//1.
//根据权重值,构建哈夫曼树;
//{2,4,5,7}
//n = 4;
void Haffman(int weight[],int n,HaffNode *haffTree){
    
    int j,m1,m2,x1,x2;
    
    //1.哈夫曼树初始化
    //n个叶子结点. 2n-1
    for(int i = 0; i < 2*n-1;i++){
        
        if(i<n)
            haffTree[i].weight = weight[i];
        else
            haffTree[i].weight = 0;
        
        haffTree[i].parent = 0;
        haffTree[i].flag = 0;
        haffTree[i].leftChild = -1;
        haffTree[i].rightChild = -1;
    }
    
    
    //2.构造哈夫曼树haffTree的n-1个非叶结点
    for (int i = 0; i< n - 1; i++){
         m1 = m2 = MaxValue;
         x1 = x2 = 0;
        //2,4,5,7
        for (j = 0; j< n + i; j++)//循环找出所有权重中,最小的二个值--morgan
        {
            if (haffTree[j].weight < m1 && haffTree[j].flag == 0)
            {
                m2 = m1;
                x2 = x1;
                m1 = haffTree[j].weight;
                x1 = j;
            } else if(haffTree[j].weight<m2 && haffTree[j].flag == 0)
            {
                m2 = haffTree[j].weight;
                x2 = j;
            }
        }
        
        //3.将找出的两棵权值最小的子树合并为一棵子树
        haffTree[x1].parent = n + i;
        haffTree[x2].parent = n + i;
        //将2个结点的flag 标记为1,表示已经加入到哈夫曼树中
        haffTree[x1].flag = 1;
        haffTree[x2].flag = 1;
        //修改n+i结点的权值
        haffTree[n + i].weight = haffTree[x1].weight + haffTree[x2].weight;
        //修改n+i的左右孩子的值
        haffTree[n + i].leftChild = x1;
        haffTree[n + i].rightChild = x2;
    }
    
}
/*
  哈夫曼编码
 由n个结点的哈夫曼树haffTree构造哈夫曼编码haffCode
 //{2,4,5,7}
 */
void HaffmanCode(HaffNode haffTree[], int n, Code haffCode[])
{
    //1.创建一个结点cd
    Code *cd = (Code * )malloc(sizeof(Code));
    int child, parent;
    //2.求n个叶结点的哈夫曼编码
    for (int i = 0; i<n; i++)
    {
        //从0开始计数
        cd->start = 0;
        //取得编码对应权值的字符
        cd->weight = haffTree[i].weight;
        //当叶子结点i 为孩子结点.
        child = i;
        //找到child 的双亲结点;
        parent = haffTree[child].parent;
        //由叶结点向上直到根结点
        while (parent != 0)
        {
            if (haffTree[parent].leftChild == child)
                cd->bit[cd->start] = 0;//左孩子结点编码0
            else
                cd->bit[cd->start] = 1;//右孩子结点编码1
            //编码自增
            cd->start++;
            //当前双亲结点成为孩子结点
            child = parent;
            //找到双亲结点
            parent = haffTree[child].parent;
        }
        
         int temp = 0;

        for (int j = cd->start - 1; j >= 0; j--){
            temp = cd->start-j-1;
            haffCode[i].bit[temp] = cd->bit[j];
        }
      
        //把cd中的数据赋值到haffCode[i]中.
        //保存好haffCode 的起始位以及权值;
        haffCode[i].start = cd->start;
        //保存编码对应的权值
        haffCode[i].weight = cd->weight;
    }
}

应用

哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。 在计算机信息处理中, 哈弗曼编码在信息论中应用举例 哈弗曼编码在信息论中应用举例 “哈夫曼编码”是一种一致性编码法(又称“熵编码法”),用于数据的无损耗压缩。这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。这种方法是由David.A.Huffman发展起来的。 例如,在英文中,e的出现概率很高,而z的出现概率则最低。当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用一个位 哈弗曼编码在信息论中应用举例 哈弗曼编码在信息论中应用举例 [4] (bit)来表示,而z则可能花去25个位(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个位。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。若能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。