一、 maximum log-likelihood estimation最大log似然估计的概念
具体参考博文:towardsdatascience.com/probability…
要点:
1、为什么叫最大似然估计而不是最大似然概率?——答:理解下面这张图,因为虽然“the probability density of the data given the parameters【右式】”等价于“the likelihood of the parameters given the data【左式】”,但是左式要求的是参数,右式要求的是数据,此处我们要求参数,因此叫likelihood.

2、为什么要引入log?——答:因为引入log之后,对乘或者除的求导,可以转化成对加和减的求导,求导更加方便。
3、什么是参数?——答:parameters define a blueprint for the model. It is only when specific values are chosen for the parameters that we get an instantiation for the model that describes a given phenomenon.
4、Intuitive explanation of maximum likelihood estimation?——答:Maximum likelihood estimation is a method that determines values for the parameters of a model. The parameter values are found such that they maximise the likelihood that the process described by the model produced the data that were actually observed.
二、KL-divergence KL散度的概念
参考博文:towardsdatascience.com/light-on-ma…
定义:
