!DQN编程实践RL_maze(RL编程的思想)

360 阅读6分钟

1代码主结构

在做每一个强化学习的时候, 我们最好先规划好要怎么分解这一个 task. 具体来说, 分成三方面的脚本可以是这样:

  • 环境脚本 (env.py)
  • 强化学习脚本 (rl.py)
  • 主循环脚本 (main.py)==强化学习的框架

在 rl.py 和 env.py 中, 我们必须有这样几个 function 和 attribute.

  • rl.py
    • rl.choose_action(s)
    • rl.store_transition(s, a, r, s_)
    • rl.learn()
    • rl.memory_full
  • env.py
    • env.reset()
    • env.render()
    • env.step(a)
    • env.state_dim
    • env.action_dim
    • env.action_bound

2DQN 算法更新

2.1算法

img

整个算法乍看起来很复杂, 不过我们拆分一下, 就变简单了. 也就是个 Q learning 主框架上加了些装饰.

这些装饰包括:

  • 记忆库 (用于重复学习)
  • 神经网络计算 Q 值
  • 暂时冻结 q_target 参数 (切断相关性)

2.2算法的代码形式

run_this.py

def run_maze():
    step = 0    # 用来控制什么时候学习
    for episode in range(300):
        # 初始化环境
        observation = env.reset()

        while True:
            # 刷新环境
            env.render()

            # DQN 根据观测值选择行为 epison_greedy策略
            action = RL.choose_action(observation)

            # 环境根据行为给出下一个 state, reward, 是否终止
            observation_, reward, done = env.step(action)

            # DQN 存储记忆
            RL.store_transition(observation, action, reward, observation_)

            # 控制学习起始时间和频率 (先累积一些记忆再开始学习)
            #首先在200步之后才开始学习,之后每5步学习一次
            if (step > 200) and (step % 5 == 0):
                RL.learn()

            # 将下一个 state_ 变为 下次循环的 state
            observation = observation_

            # 如果终止, 就跳出循环
            if done:
                break
            step += 1   # 总步数

    # end of game
    print('game over')
    env.destroy()


if __name__ == "__main__":
    env = Maze()
    RL = DeepQNetwork(env.n_actions,
                      env.n_features,#observation/state 的属性,如长宽高
                      learning_rate=0.01,
                      reward_decay=0.9,
                      e_greedy=0.9,
                      replace_target_iter=200,  # 每 200 步替换一次 target_net 的参数
                      memory_size=2000, # 记忆上限
                      # output_graph=True   # 是否输出 tensorboard 文件
                      )
    env.after(100, run_maze)#进行强化学习训练
    env.mainloop()
    RL.plot_cost()  # 观看神经网络的误差曲线

3DQN神经网络

3.1两个神经网络

更新公式:

( q_target(真实值) - q_eval(估计值) )

target_net - > q_target 他不会及时更新参数

eval_net - > q_eval 拥有最新的神经网络参数

两个神经网络是为了固定住一个神经网络 (target_net) 的参数, target_neteval_net 的一个历史版本, 拥有 eval_net 很久之前的一组参数, 而且这组参数被固定一段时间, 然后再被 eval_net 的新参数所替换. 而 eval_net 是不断在被提升的, 所以是一个可以被训练的网络 trainable=True. 而 target_nettrainable=False.

DQN 神经网络 (Tensorflow)

3.2神经网络结构

RL_brain.py:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np

np.random.seed(1)
tf.set_random_seed(1)

class DeepQNetwork:
    def __init__(
            self,
            n_actions,
            n_features,#observation/state 的属性,如长宽高
            learning_rate=0.01,
            reward_decay=0.9,
            e_greedy=0.9,
            replace_target_iter=300,
            memory_size=500,
            batch_size=32,
            e_greedy_increment=None,
            output_graph=False,
    ):
        self.n_actions = n_actions
        self.n_features = n_features #observation/state 的属性,如长宽高
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon_max = e_greedy  # epsilon 的最大值
        self.replace_target_iter = replace_target_iter  # 更换 target_net 的步数
        self.memory_size = memory_size  # 记忆上限
        self.batch_size = batch_size  # 每次更新时从 memory 里面取多少记忆出来
        self.epsilon_increment = e_greedy_increment  # epsilon 的增量
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
        # 是否开启探索模式, 并逐步减少探索次数,e_greedy_increment=None-->self.epsilon = 0,
        # e_greedy_increment!=None-->self.epsilon=self.epsilon_max
        # TODO(xhx):探索模式后续如何启动?

        # 记录学习次数 (用于判断是否更换 target_net 参数)
        self.learn_step_counter = 0

        # 初始化全 0 记忆 [s, a, r, s_]
        # size = s特征数+s_特征数+a(0/1/2/3)+r
        self.memory = np.zeros((self.memory_size, n_features * 2 + 2))  # 和视频中不同, 因为 pandas 运算比较慢, 这里改为直接用 numpy

        # 创建 [target_net, evaluate_net]
        self._build_net()

        # 替换 target net 的参数
        # TODO(xhx):替换参数这四行代码没看懂
        #在build_net中,各自的w1,b1,w2,b2都放进collection 'target_net_params' 和'eval_net_params'
        t_params = tf.get_collection('target_net_params')  # 提取 target_net 的参数
        e_params = tf.get_collection('eval_net_params')  # 提取  eval_net 的参数
        self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]  # 更新 target_net 参数
        self.sess = tf.Session()

        # 输出 tensorboard 文件
        if output_graph:
            # $ tensorboard --logdir=logs
            tf.summary.FileWriter("logs/", self.sess.graph)

        self.sess.run(tf.global_variables_initializer())
        self.cost_his = []  # 记录所有 cost 变化, 用于最后 plot 出来观看

    def _build_net(self):
        # -------------- 创建 eval 神经网络, 及时提升参数 --------------
        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')  # 用来接收 observation
        self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # 用来接收 q_target 的值, 这个之后会通过计算得到
        # 两个输入
        with tf.variable_scope('eval_net'):
            # c_names(collections_names) 是在更新 target_net 参数时会用到
            #定义W,b的初始值
            c_names, n_l1, w_initializer, b_initializer = \
                ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
                tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)  # config of layers

            # eval_net 的第一层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)

            # eval_net 的第二层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_eval = tf.matmul(l1, w2) + b2

        with tf.variable_scope('loss'): # 求误差
            self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
        with tf.variable_scope('train'):    # 梯度下降
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

        # ---------------- 创建 target 神经网络, 提供 target Q ---------------------
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')    # 接收下个 observation
        with tf.variable_scope('target_net'):
            # c_names(collections_names) 是在更新 target_net 参数时会用到
            c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

            # target_net 的第一层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)

            # target_net 的第二层. collections 是在更新 target_net 参数时会用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_next = tf.matmul(l1, w2) + b2

        #target_net 不需要求loss,然后train,只有有结构就行,直接使用eval_net的参数

    def choose_action(self,observation):
        # 统一 observation 的 shape (1, size_of_observation)
        # 讲其从数组升级为矩阵/向量形式
        observation = observation[np.newaxis, :]
        #epsilon-greedy策略
        #选max_q
        if np.random.uniform() < self.epsilon:
            # 让 eval_net 神经网络生成所有 action 的值, 并选择值最大的 action
            actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
            action = np.argmax(actions_value)
        #随机选
        else:
            action = np.random.randint(0, self.n_actions)
        return action

    def store_transition(self,s, a, r, s_):
        ##TODO:这两句是干啥的?
        #用来旧memory就被新memory替换之后重新计数用的
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0

        # 记录一条 [s, a, r, s_] 记录
        # horizontal stack左右合并成一个数组,便于存储
        transition = np.hstack((s, [a, r], s_))

        # 总 memory 大小是固定的, 如果超出总大小, 旧 memory 就被新 memory 替换
        index = self.memory_counter % self.memory_size
        self.memory[index, :] = transition  # 替换过程

        self.memory_counter += 1

    def learn(self):
        # 检查是否替换 target_net 参数
        # 每过 self.replace_target_iter次学习,就replace一下
        if self.learn_step_counter % self.replace_target_iter == 0:
            self.sess.run(self.replace_target_op)
            print('\ntarget_params_replaced\n')

        # 从 memory 中随机抽取 batch_size 这么多记忆
        if self.memory_counter > self.memory_size:
            sample_index = np.random.choice(self.memory_size, size=self.batch_size)
        else:
            sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
        batch_memory = self.memory[sample_index, :]

        # !!!以下很重要!!!
        # 获取 q_next (target_net 产生了 q) 和 q_eval(eval_net 产生的 q)
        # q_next == q_target = r+γ(maxQ(s',amax)  #Q来自target_net
        # q_eval == Q(s,a) #Q来自eval_net
        # loss = q_next-q_eval = r+γ(maxQ(s',amax)-Q(s,a)
        q_next, q_eval = self.sess.run(
            [self.q_next, self.q_eval],
            feed_dict={
                self.s_: batch_memory[:, -self.n_features:],  # observation_
                self.s: batch_memory[:, :self.n_features]  # observation
            })

        # loss = q_next - q_eval,因为两者的action是不一样的,所以不能够直接矩阵相减,需要进行以下的步骤使得对应值进行相减
        # 下面这几步十分重要. q_next, q_eval 包含所有 action 的值,
        # 而我们需要的只是已经选择好的 action 的值, 其他的并不需要.
        # 所以我们将其他的 action 值全变成 0, 将用到的 action 误差值 反向传递回去, 作为更新凭据.
        # 这是我们最终要达到的样子, 比如 q_target - q_eval = [1, 0, 0] - [-1, 0, 0] = [2, 0, 0]
        # q_eval = [-1, 0, 0] 表示这一个记忆中有我选用过 action 0, 而 action 0 带来的 Q(s, a0) = -1, 所以其他的 Q(s, a1) = Q(s, a2) = 0.
        # q_target = [1, 0, 0] 表示这个记忆中的 r+gamma*maxQ(s_) = 1, 而且不管在 s_ 上我们取了哪个 action,
        # 我们都需要对应上 q_eval 中的 action 位置, 所以就将 1 放在了 action 0 的位置.

        # 下面也是为了达到上面说的目的, 不过为了更方面让程序运算, 达到目的的过程有点不同.
        # 是将 q_eval 全部赋值给 q_target, 这时 q_target-q_eval 全为 0,
        # 不过 我们再根据 batch_memory 当中的 action 这个 column 来给 q_target 中的对应的 memory-action 位置来修改赋值.
        # 使新的赋值为 reward + gamma * maxQ(s_), 这样 q_target-q_eval 就可以变成我们所需的样子.
        # 具体在下面还有一个举例说明.

        q_target = q_eval.copy()
        batch_index = np.arange(self.batch_size, dtype=np.int32)
        eval_act_index = batch_memory[:, self.n_features].astype(int)
        reward = batch_memory[:, self.n_features + 1]

        q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)

        """
               假如在这个 batch 中, 我们有2个提取的记忆, 根据每个记忆可以生产3个 action 的值:
               q_eval =
               [[1, 2, 3],
                [4, 5, 6]]

               q_target = q_eval =
               [[1, 2, 3],
                [4, 5, 6]]

               然后根据 memory 当中的具体 action 位置来修改 q_target 对应 action 上的值:
               比如在:
                   记忆 0 的 q_target 计算值是 -1, 而且我用了 action 0;
                   记忆 1 的 q_target 计算值是 -2, 而且我用了 action 2:
               q_target =
               [[-1, 2, 3],
                [4, 5, -2]]

               所以 (q_target - q_eval) 就变成了:
               [[(-1)-(1), 0, 0],
                [0, 0, (-2)-(6)]]

               最后我们将这个 (q_target - q_eval) 当成误差, 反向传递会神经网络.
               所有为 0 的 action 值是当时没有选择的 action, 之前有选择的 action 才有不为0的值.
               我们只反向传递之前选择的 action 的值,
               """
        # 训练 eval_net
        _, self.cost = self.sess.run([self._train_op, self.loss],
                                     feed_dict={self.s: batch_memory[:, :self.n_features],
                                                self.q_target: q_target})
        self.cost_his.append(self.cost)  # 记录 cost 误差

        # 逐渐增加 epsilon, 降低行为的随机性
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1

    def plot_cost(self):
        import matplotlib.pyplot as plt
        plt.plot(np.arange(len(self.cost_his)), self.cost_his)
        plt.ylabel('Cost')
        plt.xlabel('training steps')
        plt.show()

4环境

使用 tkinter 模块编写

也可用 gym / pygame 来编写环境

maze_env.py:

"""
Reinforcement learning maze example.

Red rectangle:          explorer.
Black rectangles:       hells       [reward = -1].
Yellow bin circle:      paradise    [reward = +1].
All other states:       ground      [reward = 0].

This script is the environment part of this example.
The RL is in RL_brain.py.
"""
import numpy as np
import time
import sys
if sys.version_info.major == 2:
    import Tkinter as tk
else:
    import tkinter as tk

UNIT = 40   # pixels
MAZE_H = 9  # grid height
MAZE_W = 9  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']
        self.n_actions = len(self.action_space)
        self.n_features = 2
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin
        origin = np.array([20, 20])

        # hell
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        # hell
        hell2_center = origin + np.array([UNIT, UNIT * 2])
        self.hell2 = self.canvas.create_rectangle(
            hell2_center[0] - 15, hell2_center[1] - 15,
            hell2_center[0] + 15, hell2_center[1] + 15,
            fill='black')

        # create oval
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')

        # create red rect
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')

        # pack all
        self.canvas.pack()

    def reset(self):
        self.update()
        time.sleep(0.1)
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return (np.array(self.canvas.coords(self.rect)[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT)

    def step(self, action):
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:   # up
            if s[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:   # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:   # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT
        elif action == 3:   # left
            if s[0] > UNIT:
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        next_coords = self.canvas.coords(self.rect)  # next state

        # reward function
        if next_coords == self.canvas.coords(self.oval):
            reward = 1
            done = True
        elif next_coords in [self.canvas.coords(self.hell1)]:
            reward = -1
            done = True
        else:
            reward = 0
            done = False
        s_ = (np.array(next_coords[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT)
        return s_, reward, done

    def render(self):
        # time.sleep(0.01)
        self.update()