题目描述:
给出一个仅包含字符'(',')','{','}','['和']',的字符串,判断给出的字符串是否是合法的括号序列
括号必须以正确的顺序关闭,"()"和"()[]{}"都是合法的括号序列,但"(]"和"([)]"不合法。
题解1:核心思想:
每次遇到'(','{','['这三种字符的时候,将字符入栈stk;而每次遇到')','}',']'这三种字符的时候则让对应的匹配字符出栈。具体规则如下:
1)引入辅助栈stk,遍历字符串,每次遇到'(','{','['字符的时候将字符入栈stk
2)当遇到')','}',']'字符的时候,则检查栈是否空,且顶元素是否为匹配元素(如{和}匹配等),如果栈空或者栈顶元素不为匹配元素则括号序列不合法
3)当栈非空,且栈顶元素为匹配元素,则栈顶元素出栈。
4)循环匹配字符串,直到每次字符处理完
5)检查栈stk是否为空,栈为空则序列合法,否则不合法(当括号以正确顺序关闭时则最后的栈为空)
题解二:
括号的匹配规则应该符合先进后出原理:最外层的括号即最早出现的左括号,也对应最晚出现的右括号,即先进后出,因此可以使用同样先进后出的栈:遇到左括号就将相应匹配的右括号加入栈中,后续如果是合法的,右括号来的顺序就是栈中弹出的顺序。
具体做法:
step 1:创建辅助栈,遍历字符串。
step 2:每次遇到小括号的左括号、中括号的左括号、大括号的左括号,就将其对应的呦括号加入栈中,期待在后续遇到。
step 3:如果没有遇到左括号但是栈为空,说明直接遇到了右括号,不合法。
step 4:其他情况下,如果遇到右括号,刚好会与栈顶元素相同,弹出栈顶元素继续遍历。
step 5:理论上,只要括号是匹配的,栈中元素最后是为空的,因此检查栈是否为空即可最后判断是否合法。
展开
评论