首页
AI Coding
数据标注
NEW
沸点
课程
直播
活动
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
登录
注册
机器学习
禺垣
创建于2025-04-27
订阅专栏
机器学习专栏
等 1 人订阅
共23篇文章
创建于2025-04-27
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
AdaBoost算法的原理及Python实现
AdaBoost(Adaptive Boosting,自适应提升)是一种迭代式的集成学习算法,通过不断调整样本权重,提升弱学习器性能,最终集成为一个强学习器。它继承了 Boosting 的基本思想和关
GBDT算法原理及Python实现
GBDT(Gradient Boosting Decision Tree,梯度提升决策树)是集成学习中提升(Boosting)方法的典型代表。它以决策树(通常是 CART 树,即分类回归树)作为弱学习
Bagging、Boosting、Stacking的原理
Bagging、Boosting、Stacking是常见集成学习的形式,它们都是通过对多个学习器进行有机组合,达到比单个学习器性能更好的目标。