首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
CV技术指南
CV技术指南
创建于2021-05-30
订阅专栏
本专栏文章来源于公众号CV技术指南
等 6 人订阅
共114篇文章
创建于2021-05-30
订阅专栏
默认顺序
默认顺序
最早发布
最新发布
ML2021 | (腾讯)PatrickStar:通过基于块的内存管理实现预训练模型的并行训练
前言 目前比较常见的并行训练是数据并行,这是基于模型能够在一个GPU上存储的前提,而当这个前提无法满足时,则需要将模型放在多个GPU上。现有的一些模型并行方案仍存在许多问题,本文提出了一种名为Pat
ICCV2021 | PnP-DETR:用Transformer进行高效的视觉分析
前言 DETR首创了使用transformer解决视觉任务的方法,它直接将图像特征图转化为目标检测结果。尽管很有效,但由于在某些区域(如背景)上进行冗余计算,输入完整的feature maps的成本
ICCV2021 | 医学影像等小数据集的非自然图像领域能否用transformer?
前言 医学领域的数据集具有标注样本少、图像非自然的特点,transformer已经证明了在自然图像领域下的成功,而能否应用于医学领域等少量标注样本的非自然图像领域呢? 本文研究比较了CNN和ViTs
ICCV2021 | Vision Transformer中相对位置编码的反思与改进
前言 在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE)。
ICCV2021 | TransFER:使用Transformer学习关系感知的面部表情表征
前言 人脸表情识别(FER)在计算机视觉领域受到越来越多的关注。本文介绍了一篇在人脸表情识别方向上使用Transformer来学习关系感知的ICCV2021论文,论文提出了一个TransFER模型,
2021-视频监控中的多目标跟踪综述
本文来自一篇2021的论文,论文简要回顾了现有的SOTA模型和MOT算法、对多目标跟踪中的深度学习进行了讨论、介绍了评估方面的指标、数据集和基准结果,最后给出了结论。 本文来自公众号CV技术指南的技
CVPR2021 | SETR: 使用 Transformer 从序列到序列的角度重新思考语义分割
前言 本文介绍了一篇CVPR2021的语义分割论文,论文将语义分割视为序列到序列的预测任务,基于transformer作为编码器,介绍了三种解码器方式,选择其中效果最好的解码器方式与transfor
经典论文系列 | 缩小Anchor-based和Anchor-free检测之间差距的方法:自适应训练样本选择
前言 本文介绍一篇CVPR2020的论文,它在paperswithcode上获得了16887星,谷歌学术上有261的引用次数。 论文主要介绍了目标检测现有的研究进展、anchor-based和anc
单阶段实例分割综述
前言 本文比较全面地介绍了实例分割在单阶段方法上的进展,根据基于局部掩码、基于全局掩码和按照位置分割这三个类别,分析了相关19篇论文的研究情况,并介绍了它们的优缺点。 公众号CV技术指南原文文末附
CVPR2021提出的一些新数据集汇总
前言 在《论文创新的常见思路总结》(点击标题阅读)一文中,提到过一些新的数据集或者新方向比较容易出论文。因此纠结于选择课题方向的读者可以考虑以下几个新方向。文末附相关论文获取方式。 本文来自公众号C
使用 PyTorch Lightning 将深度学习管道速度提高 10 倍
前言 本文介绍了如何使用 PyTorch Lightning 构建高效且快速的深度学习管道,主要包括有为什么优化深度学习管道很重要、使用 PyTorch Lightning 加快实验周期的六种方法、
名词解释 | Anchor Boxes—高质量目标检测的关键
前言 本文介绍了anchor的基本概念,基于anchor的实际应用流程,以及anchor的设置。 本文讲的很浅,仅用于帮助小白理解基本概念。后续还会发一些深入理解anchor的文章,请继续关注公众号
多标签分类概述
前言 本文介绍了多标签分类的基本概念和评估指标,总结了可用于提高多标签分类模型性能的多种方法:建模技巧、监督特征选择方法、无监督特征选择方法和上采样方法。 本文来自公众号CV技术指南的技术总结系列
深度学习中的人体姿态估计概述
前言 本文概述了多人姿态估计任务,重点介绍了深度学习中的一些多人姿态估计方法,并简要介绍了多人姿态估计的应用场景。 本文来自公众号CV技术指南的技术总结系列 点个关注 ,专注于计算机视觉的技术总结、
神经网络的初始化方法总结 | 又名“如何选择合适的初始化方法”
前言 本文介绍了为什么初始化很重要,总结了常用的几种初始化方法:全零或等值初始化、正态初始化、均匀初始化、Xavier初始化、He初始化和Pre-trained初始化,并介绍了几个还活跃的初始化方向
语义分割综述
前言 本文对语义分割相关重要论文进行了简要概述,介绍了它们的主要改进方法和改进效果,并提供了这些论文的下载方式。 本文来自公众号CV技术指南的技术总结系列 欢迎关注CV技术指南 ,专注于计算机视觉的
Batch Size对神经网络训练的影响
前言 这篇文章非常全面细致地介绍了Batch Size的相关问题。结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响、如何影响以及如何缩小影响等有关内容。 本文来自
padding在深度学习模型中重要吗?
本文来自公众号CV技术指南的技术总结系列 点个关注 ,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读。 前言 本文介绍了两个实验,展示了padding在深度学习模型中的影响。 实验一 卷积是
计算机视觉中的图像标注工具总结
本文来自公众号CV技术指南资源分享系列 创建高质量的数据集是任何机器学习项目的关键部分。在实践中,这通常比实际训练和超参数优化花费的时间更长。因此,选择合适的标注工具至关重要。在这里,我们总结了一
轻量化模型系列--GhostNet:廉价操作生成更多特征
前言 由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难。特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究。 论文提出了一种新颖的 Ghost
下一页