首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
确定删除此收藏集吗
删除后此收藏集将被移除
取消
确定删除
确定删除此文章吗
删除后此文章将被从当前收藏集中移除
取消
确定删除
编辑收藏集
名称:
描述:
0
/100
公开
当其他人关注此收藏集后不可再更改为隐私
隐私
仅自己可见此收藏集
取消
确定
知识图谱
订阅
轩哥Up
更多收藏集
微信扫码分享
微信
新浪微博
QQ
11篇文章 · 0订阅
苏宁构建知识图谱的大规模告警收敛和根因定位实践 - AI 智能监控保证日常和大促稳定性
作者简介 汤泳,苏宁科技集团智能监控与运维产研中心总监,中国商业联合会智库顾问,致力于海量数据分析、基于深度学习的时间序列分析与预测、自然语言处理和图神经网络的研究。
图算法、图数据库在风控场景的应用
风控的图技术应用是如何演变的呢?当中的算法又进行了怎么样的发展?标签传播算法和半监督技术是否已经过时?…本文将分享图算法在风控中的应用。
与 AI 同行,利用 ChatGLM 构建知识图谱
通过一些实践发现,ChatGPT 的确可以根据海量文本数据自动生成实体、属性和关系三元组等知识元素,从而快速构建大规模的知识图谱。
Jupyter Notebook 遇上 NebulaGraph,可视化探索图数据库
本文手把手教你咋在 Jupyter Notebook 中,愉快地玩图数据库。读完本文,一条查询语句就可以轻易地画出返回结果啦。
基于 LLM 的知识图谱另类实践
大语言模型时代,我们有了 few-shot 和 zero-shot 的能力。借助这些 LLM 能力,如何更便捷地实现知识图谱的知识抽取,用知识图谱来解决相关问题。
Text2Cypher:大语言模型驱动的图查询生成
本文的主题是我们认为这个 LLM+ 领域最唾手可得、最容易摘取的果实,Text2Cypher:自然语言生成图查询。输入自然语言,生成相对应的图查询语句,甚至可以直接返回该语句执行结果。
关于 LLM 和知识图谱、图数据库,大家都关注哪些问题呢?
此时,距离 ChatGPT 面世已过去半年有余,一起来看看热度散去之后,大家都在关心什么问题。也许他们关心的问题也是你关注的点。
7 种查询策略教你用好 Graph RAG 探索知识图谱
我们在这篇文章中探讨了知识图谱,特别是图数据库 NebulaGraph,是如何结合 LlamaIndex 和 GPT-3.5 为 Philadelphia Phillies 队构建了一个 RAG。
2023 年值得一读的技术文章 | NebulaGraph 技术社区
LLM 作为 2023 年技术圈的一大热点,Graph + RAG 如何更好地实践?让大家更好地了解图、知识图谱、大模型这一新的三元组呢?
这是一份简单到没朋友的上手图数据库的图文教程
本文是一份极度友好,你即便只会一个开机操作、不懂任何数据库的人,也能通过学习本文查询到你想要的图关系。