稀土掘金 稀土掘金
    • 首页
    • AI Coding NEW
    • 沸点
    • 课程
    • 直播
    • 活动
    • AI刷题
    • APP
      插件
      • 搜索历史 清空
        • 写文章
        • 发沸点
        • 写笔记
        • 写代码
        • 草稿箱
        创作灵感 查看更多
    • vip
      会员
确定删除此收藏集吗
删除后此收藏集将被移除
取消
确定删除
确定删除此文章吗
删除后此文章将被从当前收藏集中移除
取消
确定删除
编辑收藏集
0 /100
神经网络
订阅
avatar
jackcooper 创作等级LV.3
更多收藏集

微信扫码分享

微信
新浪微博
QQ

1篇文章 · 0订阅
  • 深度学习之卷积神经网络 CNN 及 tensorflow 代码实现示例
    卷积神经网络 CNN 的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量。 全连接层:通常在 CNN 的尾部进行重新拟合,减少特征信息的损失 输出层:用于输出结果 当然中间还可以使用一些其他的功能层: 归一化层(Batch Normalization):在 CNN 中对特征的归一化 切分层:对某些(图片)数据的进行分区域的单独学习 融合层:对独立进行特征学习的分支进行融合
    • 在你耳边BB
    • 8年前
    • 2.0k
    • 22
    • 3
    深度学习 神经网络 机器学习
    深度学习之卷积神经网络 CNN 及 tensorflow 代码实现示例