首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
用户867573478982
掘友等级
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
0
文章 0
沸点 0
赞
0
返回
|
搜索文章
最新
热门
浅析集成学习的策略
一. 简述 面对一个机器学习问题,通常有两种策略。一种是开发人员尝试各种模型,选择其中表现最好的模型做重点调参优化。这种策略类似于奥运会比赛,通过强强竞争来选拔最优的运动员,并逐步提高成绩。另一种重要
强化学习的探索和利用
一. 简述 在和环境不断交互的过程中,智能体在不同的状态下不停地探索,获取不同的动作的反馈。探索(Exploration)能够帮助智能体通过不断试验获得反馈,利用(Exploitation)是指利用已
强化学习的基本求解方法(二)
1. 简介 时间差分法主要基于时间序列的差分数据进行学习,其分为固定策略和非固定策略两种。固定策略时间差分法以Sarsa算法为代表;非固定策略以Q-Learning算法为代表。 2. S arsa 算
强化学习的基本求解方法(一)
1. 简介 上一节主要介绍了强化学习的基本概念,主要是通过设定场景带入强化学习的策略、奖励、状态、价值进行介绍。有了基本的元素之后,就借助马尔可夫决策过程将强化学习的任务抽象出来,最后使用贝尔曼方程进
浅析强化学习基础
1. 简介 强化学习关注身处某个环境中的智能体通过采取行动获得最大化的累积收益。和传统的监督学习不同,在强化学习中,并不直接给智能体的输出打分。相反,智能体只能得到一个间接的反馈,而无法获得一个正确的
反向传播算法
一. 概述 多层网络的学习拟合能力比单层网络要强大很多。所以想要训练多层网络,前面的简单感知机学习方法显然有些不足,需要拟合能力更加强大的算法。反向传播算法( Back Propagation,BP)
神经网络模型
一. 概述 通过上篇对神经网络组成部分的分析,本篇的内容是基于上篇内容的继承(上篇内容详见:神经网络的组成)。如果从结构上讲,神经网络就是由很多个单一的神经单元组合到一起,这里面的一个神经单元的输出就
神经网络的组成
一. 摘要 这里将继续介绍NLP算法体系:基于人工神经网络(Artinci Neural Network)的深度学习方法。人工神经网络思想来源于仿生学对大脑机制的探索,即希望通过对大脑的模拟达到智能的
长短期记忆网络(LSTM)
一. 摘要 门控制循环单元是为了解决循环神经网络短期记忆问题提出的解决方案,它们引入称作“门”的内部机制,可以调节信息流。在上次的内容分享中,我们简单解析了名称为GRU的门控制循环单元。因为“门”的机
循环神经网络之——门控制循环单元(GRU)
一. 摘要 在上次分享中,我们了解到了基础的循环神经网络(RNN),对于基础的循环神经网络模型,它可以比较好的通过t时刻关联到t-1时刻和t+1时刻,甚至更多。但它对任意时刻的输入都是赋予相同权重计算
下一页
个人成就
文章被点赞
1
文章被阅读
8,382
掘力值
82
关注了
0
关注者
0
收藏集
0
关注标签
7
加入于
2022-01-21