首页
AI Coding
NEW
沸点
课程
直播
活动
AI刷题
APP
插件
搜索历史
清空
创作者中心
写文章
发沸点
写笔记
写代码
草稿箱
创作灵感
查看更多
会员
登录
注册
斜阳1
掘友等级
获得徽章 0
动态
文章
专栏
沸点
收藏集
关注
作品
赞
0
文章 0
沸点 0
赞
0
返回
|
搜索文章
最新
热门
转载【AI系统】模型转换流程
用户在使用 AI 框架时,可能会遇到训练环境和部署环境不匹配的情况,比如用户用 Caffe 训练好了一个图像识别的模型,但是生产环境是使用 TensorFlow 做预测。 因此就需要将使用不同训练框架
转载【AI系统】模型转换基本介绍
模型转换的主要任务是实现模型在不同框架之间的流转。随着深度学习技术的发展,训练框架和推理框架的功能逐渐分化。训练框架通常侧重于易用性和研究人员的算法设计,提供了分布式训练、自动求导、混合精度等功能,旨
转载【AI系统】模型剪枝
本文将介绍模型剪枝的概念、方法和流程,这是一种通过移除神经网络中的冗余或不重要参数来减小模型规模和提高效率的模型压缩技术。 剪枝不仅可以减少模型的存储和计算需求,还能在保持模型性能的同时提高模型的泛化
转载【AI系统】训练后量化与部署
本文将会重点介绍训练后量化技术的两种方式:动态和静态方法,将模型权重和激活从浮点数转换为整数,以减少模型大小和加速推理。并以 KL 散度作为例子讲解校准方法和量化粒度控制来平衡模型精度和性能。 训练后
转载【AI系统】EfficientFormer 系列
本文主要介绍一种轻量化的 Transformer 结构,在获得高性能的同时,能够保持一定的推理速度。以延迟为目标进行优化设计。通过延迟分析重新探讨 ViT 及其变体的设计原则。 EfficientFo
转载【AI系统】MobileNet 系列
在本文会介绍 MobileNet 系列,重点在于其模型结构的轻量化设计,主要介绍详细的轻量化设计原则,基于这原则,MobileNetV1 是如何设计成一个小型,低延迟,低功耗的参数化模型,可以满足各种
转载【AI系统】推理系统架构
推理系统架构是 AI 领域中的一个关键组成部分,它负责将训练好的模型应用于实际问题,从而实现智能决策和自动化。在构建一个高效的推理系统时,我们不仅需要考虑其性能和准确性,还需要确保系统的可扩展性、灵活
转载【AI系统】TVM 实践案例
在本文我们探讨一下,如何利用 AI 编译器在新的硬件上部署一个神经网络,从算法设计到实际运行,有哪些需要考虑的地方?本文将以 TVM 为例,首先介绍一下 TVM 的工作流: 导入模型。TVM 可以从
转载:【AI系统】算子手工优化
在上一篇中,探讨了算子计算和调度的概念,并强调了高效调度策略在释放硬件性能和降低延迟方面的重要性。本文,我们将深入讨论手写算子调度时需要考虑的关键因素,并介绍一些著名的高性能算子库。 计算分析 在优化
转载【AI系统】为什么需要 AI 编译器
本文将通过探讨 AI 编译器的黄金年代以及传统编译器与 AI 编译器的区别等角度,来介绍为什么需要 AI 编译器。 AI 编译器黄金年代 图灵奖获得者 David Patterson 在 2019 年
下一页
个人成就
文章被阅读
9,056
掘力值
59
关注了
0
关注者
0
收藏集
0
关注标签
0
加入于
2024-12-09