Elasticsearch:交易搜索 - MCP

0 阅读4分钟

在今天的文章里,我们来展示一下如何使用 MCP 来进行交易搜索。

安装

Elasticsearch 及 Kibana

 如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

在安装的时候,请选择 Elastic Stack 8.x/9.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

​​

在本文中,我们使用 Elastic Stack 9.1.2 来进行展示。

启动白金试用

我们需要使用到内置的 ELSER 模型来向量化我们的数据。我们需要启动白金试用:

​​

​​

​​

​​

这样就启动了白金试用。

下载代码

我们按照如下的方式来下载代码:

`git clone https://github.com/liu-xiao-guo/transaction_search_mcp`AI写代码

我们可以看到如下的文件:

`

1.  $ pwd
2.  /Users/liuxg/python/transaction_search_mcp
3.  $ ls -al
4.  total 32
5.  drwxr-xr-x  11 liuxg  staff   352 Feb 10 14:12 .
6.  drwxr-xr-x@ 38 liuxg  staff  1216 Feb 10 14:12 ..
7.  -rw-r--r--   1 liuxg  staff   838 Feb 10 14:12 .env.example
8.  drwxr-xr-x  12 liuxg  staff   384 Feb 10 14:12 .git
9.  -rw-r--r--   1 liuxg  staff  4050 Feb 10 14:12 .gitignore
10.  -rw-r--r--   1 liuxg  staff  4501 Feb 10 14:12 README.md
11.  drwxr-xr-x   4 liuxg  staff   128 Feb 10 14:12 docs
12.  drwxr-xr-x   4 liuxg  staff   128 Feb 10 14:12 requirements
13.  drwxr-xr-x   6 liuxg  staff   192 Feb 10 14:12 scripts
14.  drwxr-xr-x   5 liuxg  staff   160 Feb 10 14:12 src
15.  drwxr-xr-x   3 liuxg  staff    96 Feb 10 14:12 tests

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

我们把 .env.example 拷贝到 .env 文件中去:

`

1.  # Copy environment template
2.  cp .env.example .env

4.  # Edit .env with your configuration
5.  # - Elasticsearch URL and credentials
6.  # - OpenAI API key (for LLM client)

`AI写代码

.env

`

1.  # Elasticsearch Configuration
2.  ELASTICSEARCH_HOST=https://localhost:9200
3.  ELASTICSEARCH_USERNAME=elastic
4.  ELASTICSEARCH_PASSWORD=LYXAfNkSab8QwsbrriYN
5.  ELASTICSEARCH_API_KEY=X3NZeFJwd0Itb1hyWHlSejg4c3c6bHdwWGhaVTRBRTA1WnF1TUlUd1c2dw==
6.  ELASTICSEARCH_INDEX=banking_transactions

8.  OPEN_AI_KEY=<YourOpenAIKey>

`AI写代码
`

1.  transaction_search_mcp/
2.  ├── src/                          # Source code
3.  │   ├── server/                   # MCP server implementation
4.  │   │   └── server.py            # Main MCP server with transaction search tools
5.  │   └── clients/                 # Client applications
6.  │       ├── chat_client.py       # Basic Streamlit chat interface
7.  │       └── chat_client_llm.py   # Enhanced LLM-powered chat client
8.  ├── scripts/                     # Setup and utility scripts
9.  │   ├── setup_elasticsearch.py   # Basic Elasticsearch setup with test data
10.  │   ├── setup_elasticsearch_llm.py # Enhanced setup with realistic test data
11.  │   ├── run_chat.py             # Launch basic chat client
12.  │   └── run_llm_chat.py         # Launch LLM-powered chat client
13.  ├── tests/                       # Test files
14.  │   └── test_server.py          # Comprehensive server tests
15.  ├── docs/                        # Documentation
16.  │   ├── README.md               # Basic implementation docs
17.  │   └── README_LLM.md           # LLM-enhanced version docs
18.  ├── requirements/                # Dependencies
19.  │   ├── requirements.txt        # Server dependencies
20.  │   └── client_requirements.txt # Client dependencies
21.  ├── .env                        # Environment variables (not in git)
22.  ├── .env.example               # Environment template
23.  └── .gitignore                 # Git ignore rules

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

创建虚拟环境

我们使用如下的命令:

`

1.  $ python -m venv .venv
2.  $ source .venv/bin/activate
3.  (.venv) $ # Server dependencies
4.  pip install -r requirements/requirements.txt

6.  # Client dependencies (for chat interfaces)
7.  pip install -r requirements/client_requirements.txt

`AI写代码

设置 Elasticsearch

我们运行如下的命令:

`python scripts/setup_elasticsearch.py`AI写代码

我们可以到 Kibana 中进行查看:

我们可以看到有 500 个交易记录。其中的一个交易记录如下:

`GET banking_transactions/_doc/txn_000001`AI写代码
`

1.  {
2.    "_index": "banking_transactions",
3.    "_id": "txn_000001",
4.    "_version": 1,
5.    "_seq_no": 0,
6.    "_primary_term": 1,
7.    "found": true,
8.    "_source": {
9.      "transaction_id": "txn_000001",
10.      "account_id": "acc_001",
11.      "account_type": "savings",
12.      "transaction_date": "2026-01-16",
13.      "posted_date": "2026-01-17",
14.      "amount": -47.64,
15.      "currency": "USD",
16.      "description": "Home Depot - car_wash",
17.      "memo": "Purchase at Home Depot",
18.      "reference": "REF271525",
19.      "merchant": "Home Depot",
20.      "category": "gas",
21.      "subcategory": "car_wash",
22.      "transaction_type": "fee",
23.      "location": {
24.        "city": "Austin",
25.        "state": "TX",
26.        "country": "US",
27.        "postal_code": "73301",
28.        "coordinates": {
29.          "lat": 33.40455,
30.          "lon": -96.542508
31.        }
32.      },
33.      "tags": [
34.        "transportation"
35.      ],
36.      "balance_after": 3929.25,
37.      "is_pending": false,
38.      "is_recurring": false,
39.      "created_at": "2026-02-10T14:34:40.767Z",
40.      "updated_at": "2026-02-10T14:34:40.767Z"
41.    }
42.  }

`AI写代码![](https://csdnimg.cn/release/blogv2/dist/pc/img/runCode/icon-arrowwhite.png)

如果我们希望使用 LLM 来帮我们生成相应的模拟数据,我们可以运行:

`python scripts/setup_elasticsearch_llm.py`AI写代码

这些数据将更符合现实的实际交易。

运行 MCP 服务器

我们使用如下的命令来运行服务器:

`

1.  # Start MCP server
2.  python src/server/server.py

`AI写代码

运行客户端

我们运行如下的命令:

`python scripts/run_chat.py`AI写代码

我们可以看到如上的界面。我们可以尝试如下的搜索:

我们可以使用由LLM 驱动的界面:

`python scripts/run_llm_chat.py`AI写代码

源码请在地址 github.com/liu-xiao-gu… 下载。