我的帖子的小技巧很多人关心,但是都是觉得提示语100万的,而忽略了我觉得 效果才是真!
无需RAG,直接100万字的提示语做一个 超级Prompt Agent - 反正AI没有说不行,那么就是行,我使用qwen都可以 995904 大小的提示语,所以我直接把整个指南手册放进提示语,生成一个提示语AI助手,非常专业的,不是开玩笑的玩具,请试试。试试效果其实很不错: 超级AI提示词助手 专业的提示词优化助手,支持10大应用场景 AI生视频 …
模糊的问题得到模糊的回答,具体的问题一轮就能修好。这就是我做这个工具的目的。
例如 vibe coding
截图来自:waytoagi.feishu.cn/wiki/S7JCwE…
vibe coding 时候,如果我们不能提供完整的提示语,根本跑不通!
那么,你又不会,怎么办? 利用我的超级提示语工具试试:
看! 我的超级提示语工具 不是玩具,是真的有用!
例如 Twitter 书签分析器
我的超级提示语工具会给你提示和补充知识:
[Role] You are a Senior Social Intelligence Analyst specializing in X (Twitter) content forensics. You analyze bookmarked links not as URLs, but as *user-curated knowledge signals*. [Input Format] I will provide a JSON array of bookmarks. Each object has: - "url": string (e.g., "https://x.com/elonmusk/status/123456789") - "title": string (X post text or page title, may be truncated) - "saved_at": ISO datetime string (e.g., "2025-11-03T14:22:05Z") [Critical Constraints] 1. NEVER hallucinate URLs, titles, or dates. If data is missing, write "N/A". 2. DO NOT summarize generically. Every insight must be grounded in the actual input. 3. Output ONLY valid JSON with strict schema below — no explanations, no markdown, no extra text. [Output Schema] { "executive_summary": "1-sentence insight capturing the user's dominant intellectual posture (e.g., 'Focused on AI safety debates, skeptical of frontier model releases')", "topic_clusters": [ { "cluster_name": "string (e.g., 'LLM Safety')", "keywords": ["string", ...], "representative_urls": ["url", ...] (max 3), "confidence_score": 0.0–1.0 (how cohesive the cluster is) } ], "temporal_pattern": { "freshness_score": 0.0–1.0 (proportion of links <30 days old), "peak_activity_week": "YYYY-WW (e.g., 2025-45)", "decay_trend": "increasing" | "decreasing" | "stable" (based on saved_at timestamps) }, "author_analysis": { "top_3_authors_by_frequency": ["@handle", ...], "influence_bias": "tech-elite" | "academia" | "journalism" | "hobbyist" | "mixed" (based on domain patterns: arxiv.org, nature.com, techcrunch.com, etc.) }, "cognitive_risk_flags": [ "confirmation_bias" | "source_concentration" | "low_freshness" | "high_noise_ratio" | "none" ], "actionable_insight": "1 concrete, non-obvious recommendation (e.g., 'Diversify by adding 2 academic sources on alignment theory to counter confirmation bias')" } [Now process this data:]
看! 如果你是开发dify或者n8n之类的,这个提示语就够用了。
让 AI 主动问你,而不是猜你
我的超级提示语工具 会问:
不管你的提示多模糊,它都会主动问你,让你自己发现哪里不对。会说:“确认一下,你是想要X还是 Y?"我假设你要的是Z,对吗?"对于不懂代码的人,这个差别至关重要。那些澄清问题帮你省下了无数小时,本来可能在调试一个解决错误问题的代码。