Docker容器化:一键部署完整AI系统
前言
Docker让AI系统的部署变得简单可靠。本文介绍如何使用Docker容器化整个AI Agent框架。
适合读者: 运维工程师、后端开发者
一、Docker Compose配置
# docker-compose.yml
version: '3.8'
services:
# 前端服务
frontend:
build: ./frontend
ports:
- "3000:3000"
environment:
- NEXT_PUBLIC_API_URL=http://localhost:8000
depends_on:
- server
# 后端服务
server:
build: ./server
ports:
- "8000:8000"
environment:
- DATABASE_URL=postgresql+asyncpg://user:password@postgres:5432/aiagent
- REDIS_URL=redis://redis:6379/0
- AGENT_URL=http://agent:8001
depends_on:
- postgres
- redis
- agent
# AI Agent服务
agent:
build: ./agent
ports:
- "8001:8001"
environment:
- OLLAMA_BASE_URL=http://ollama:11434
- WEAVIATE_URL=http://weaviate:8080
depends_on:
- ollama
- weaviate
# PostgreSQL数据库
postgres:
image: postgres:15
environment:
- POSTGRES_USER=user
- POSTGRES_PASSWORD=password
- POSTGRES_DB=aiagent
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "5432:5432"
# Redis缓存
redis:
image: redis:7
ports:
- "6379:6379"
volumes:
- redis_data:/data
# Weaviate向量数据库
weaviate:
image: semitechnologies/weaviate:1.27.1
ports:
- "8080:8080"
environment:
- QUERY_DEFAULTS_LIMIT=25
- AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true
- PERSISTENCE_DATA_PATH=/var/lib/weaviate
- DEFAULT_VECTORIZER_MODULE=none
volumes:
- weaviate_data:/var/lib/weaviate
# Ollama LLM服务
ollama:
image: ollama/ollama:latest
ports:
- "11434:11434"
volumes:
- ollama_data:/root/.ollama
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
volumes:
postgres_data:
redis_data:
weaviate_data:
ollama_data:
二、Dockerfile示例
2.1 Frontend Dockerfile
# frontend/Dockerfile
FROM node:18-alpine AS builder
WORKDIR /app
COPY package*.json ./
RUN npm ci
COPY . .
RUN npm run build
FROM node:18-alpine AS runner
WORKDIR /app
ENV NODE_ENV production
COPY --from=builder /app/public ./public
COPY --from=builder /app/.next/standalone ./
COPY --from=builder /app/.next/static ./.next/static
EXPOSE 3000
CMD ["node", "server.js"]
2.2 Server Dockerfile
# server/Dockerfile
FROM python:3.11-slim
WORKDIR /app
# 安装系统依赖
RUN apt-get update && apt-get install -y \
gcc \
postgresql-client \
&& rm -rf /var/lib/apt/lists/*
# 安装Python依赖
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# 复制代码
COPY . .
# 运行数据库迁移
RUN chmod +x ./deploy/entrypoint.sh
EXPOSE 8000
ENTRYPOINT ["./deploy/entrypoint.sh"]
CMD ["uvicorn", "server.main:app", "--host", "0.0.0.0", "--port", "8000"]
2.3 Agent Dockerfile
# agent/Dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8001
CMD ["uvicorn", "http_service:app", "--host", "0.0.0.0", "--port", "8001"]
三、启动脚本
#!/bin/bash
# deploy/start.sh
# 1. 启动所有服务
docker-compose up -d
# 2. 等待数据库就绪
echo "等待数据库启动..."
sleep 10
# 3. 运行数据库迁移
docker-compose exec server alembic upgrade head
# 4. 下载Ollama模型
docker-compose exec ollama ollama pull qwen2.5:7b
docker-compose exec ollama ollama pull nomic-embed-text
echo "部署完成!"
echo "前端: http://localhost:3000"
echo "后端API: http://localhost:8000/docs"
四、健康检查
# docker-compose.yml中添加健康检查
services:
server:
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 40s
五、日志管理
# 查看所有服务日志
docker-compose logs -f
# 查看特定服务日志
docker-compose logs -f server
# 查看最近100行日志
docker-compose logs --tail=100 server
下一篇预告: 《Loguru日志系统:分布式应用的调试利器》