Android消息机制之同步屏障

7 阅读6分钟

1、Message

Android 中的 Message 分为三种:

  • 同步消息
  • 异步消息
  • 同步屏障消息

它们都是Message,只是成员变量有些区别。

一般我们通过 Handler 发送消息(如调用Handler.sendMessage(@NonNull Message msg)),最终都会调用 Handler.enqueueMessage()让消息入队,如下:

public class Handler {

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
} 

这里 msg.target 被赋值为 thisthis 即为 Handler 对象,并且 Message 的成员变量 mAsynchronous 默认为 false ,这种消息是同步消息,一般我们发送的消息都是同步消息。

相对应也应该有异步消息吧?的确,还有一种很容易被忽略的异步消息,因为除了系统源码外,我们一般很少会使用异步消息。那么,如何发送一个异步消息呢?

简单来说有两种方式。

一种是直接设置消息为异步的:

Message msg = mHandler.obtainMessage();
msg.setAsynchronous(true);
mMyHandler.sendMessage(msg);

还有一种需要用到 Handler 的构造方法,需传入 async 参数赋值为 true,不过该方法已被标记为 @hide 了,普通应用无法使用:

public class Handler {
    /**
    * @hide
    */
    @UnsupportedAppUsage
    public Handler(boolean async) {
        this(null, async);
    }

} 

那么,异步消息与同步消息的执行有什么不一样呢?其实如果没有同步屏障,异步消息与同步消息的执行并没有什么区别。

2、同步屏障

同步屏障究竟有什么作用?

同步屏障为Handler消息机制提供了一种优先级策略,让异步消息执行的优先级高于同步消息,通过MessageQueue.postSyncBarrie()可以开启同步屏障:

public final class MessageQueue {

    /**
    * Posts a synchronization barrier to the Looper's message queue.
    *
    * Message processing occurs as usual until the message queue encounters the
    * synchronization barrier that has been posted. When the barrier is encountered,
    * later synchronous messages in the queue are stalled (prevented from being executed)
    * until the barrier is released by calling {@link #removeSyncBarrier} and specifying
    * the token that identifies the synchronization barrier.
    *
    * This method is used to immediately postpone execution of all subsequently posted
    * synchronous messages until a condition is met that releases the barrier.
    * Asynchronous messages (see {@link Message#isAsynchronous} are exempt from the barrier
    * and continue to be processed as usual.
    *
    * This call must be always matched by a call to {@link #removeSyncBarrier} with
    * the same token to ensure that the message queue resumes normal operation.
    * Otherwise the application will probably hang!
    *
    * @return A token that uniquely identifies the barrier. This token must be
    * passed to {@link #removeSyncBarrier} to release the barrier.
    *
    * @hide
    */
    @UnsupportedAppUsage
    @TestApi
    public int postSyncBarrier() {
        return postSyncBarrier(SystemClock.uptimeMillis());
    }
} 

postSyncBarrier() 方法前面有一大段注释,大概意思是调用该方法会往 MessageQueue 中插入一条同步屏障 message,MessageQueue 中该 message 后的同步消息不会被执行,直到通过调用 removeSyncBarrier() 方法移除同步屏障;而异步消息有豁免权,可以正常执行。

public final class MessageQueue {
    // The next barrier token.
    // Barriers are indicated by messages with a null target whose arg1 field carries the token.
    // 这里有解释:同步屏障是一个 target 为 null 并且 arg1 为这个 token 的消息
    @UnsupportedAppUsage
    private int mNextBarrierToken;

    private int postSyncBarrier(long when) {
        // Enqueue a new sync barrier token
        // We don't need to wake the queue because the purpose of a barrier is to stall it.
        synchronized (this) {
            final int token = mNextBarrierToken++; //为 token 赋值
            final Message msg = Message.obtain();
            msg.markInUse();

            // 这里初始化 Message 对象的时候没有给 target 赋值, 即 target==null
            msg.when = when;
            msg.arg1 = token;

            Message prev = null;
            Message p = mMessages;

            if (when != 0) {
                while (p != null && p.when <= when) {
                    prev = p;
                    p = p.next;
                }
            }
            // 将 msg 插入消息队列
            if (prev != null) { // invariant: p == prev.next
                msg.next = p;
                prev.next = msg;
            } else {
                msg.next = p;
                mMessages = msg;
            }
            return token;
        }
    }
} 

可以看到,同步屏障Message初始化的时候没有给 target 赋值,因此同步屏障消息的 target == null

那么插入同步屏障消息后,异步消息是如何被优先处理的呢?

如果对消息机制有所了解的话,应该知道消息的最终处理是在消息轮询器 Looper.loop() 中,而 loop() 循环中会调用 MessageQueue.next() 从消息队列中取消息,来看看关键代码:

public final class MessageQueue {

    @UnsupportedAppUsage
    Message next() {
        ...
        for (; ; ) {
            nativePollOnce(ptr, nextPollTimeoutMillis);
            synchronized (this) {
                Message msg = mMessages;
                // 如果 msg.target 为 null,是一个同步屏障消息,则进入这个判断
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier. Find the next asynchronous message in the queue.
                    // 先执行 do,再执行 while,遇到同步消息会跳过,遇到异步消息退出循环
                    // 即取出的 msg 为该屏障消息后的第一条异步消息,屏障消息不会被取出
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }

                if (msg != null) {
                    // 如果消息的处理时间大于当前时间则等待
                    if (now < msg.when) {
                        // Next message is not ready. Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        // 处理消息
                        mBlocked = false;

                        if (prevMsg != null) {
                            // 将消息移除
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        // 返回消息
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
                ...
            }
        }
    }
} 

从上面的代码可以看出,当执行到同步屏障消息(即 target == null 的 Message )时,消息机制优先处理异步消息。由于代码中先执行 do 再执行 while,取出的 msg 为该屏障消息后的第一条异步消息,而屏障消息不会被取出

下面用示意图简单说明: image.png

如上图所示,在消息队列中有同步消息和异步消息(黄色部分)以及同步屏障消息(红色部分)。当执行到同步屏障消息的时候,msg_2 和 msg_M 这两个异步消息会被优先处理,而 msg_3 等同步消息则要等异步消息处理完后再处理。

3、同步屏障的使用场景

在日常的应用开发中,我们很少会用到同步屏障。Android 系统源码中 UI 更新就是使用的同步屏障,这样会优先处理更新 UI 的消息,尽量避免造成界面卡顿。

UI 更新都会调用 ViewRootImpl.scheduleTraversals(),其代码如下:

public final class ViewRootImpl{

    @UnsupportedAppUsage
    void scheduleTraversals() {
        if (!mTraversalScheduled) {
            mTraversalScheduled = true;
            //往队列中插入同步屏障消息
            mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
            //往队列中插入异步消息
            mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
            if (!mUnbufferedInputDispatch) {
                scheduleConsumeBatchedInput();
            }
            notifyRendererOfFramePending();
            pokeDrawLockIfNeeded();
        }
    }
}

Choreographer.postCallback()最终调用了postCallbackDelayedInternal()方法:

public final class Choreographer {

    private void postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis) {
        ...
        synchronized (mLock) {
            final long now = SystemClock.uptimeMillis();
            final long dueTime = now + delayMillis;
            mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);

            if (dueTime <= now) {
                scheduleFrameLocked(now);
            } else {
                Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
                msg.arg1 = callbackType;
                msg.setAsynchronous(true); // 异步消息
                mHandler.sendMessageAtTime(msg, dueTime); 
            }
        }
    }
}

这里就往队列中插入了同步屏障消息,然后又插入了异步消息,UI 更新相关的消息就可以优先得到处理。

前面代码中我们看到,同步屏障消息并不会自己移除,所以需要调用相关代码来移除同步屏障消息,让同步消息可以正常执行。Android 源码中在执行绘制流程之前执行了移除同步屏障的代码:

public final class ViewRootImpl {

    void doTraversal() {
        if (mTraversalScheduled) {
            mTraversalScheduled = false;
            // 移除同步屏障消息
            mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
            ...
            // 里面执行了绘制的3大流程
            performTraversals();
            ...
        }
    }

    public final class MessageQueue {
        /**
         * Removes a synchronization barrier.
         *
         * @param token The synchronization barrier token that was returned by
         *              {@link #postSyncBarrier}.
         * @throws IllegalStateException if the barrier was not found.
         * @hide
         */
        @UnsupportedAppUsage
        @TestApi
        public void removeSyncBarrier(int token) {
            // Remove a sync barrier token from the queue.
            // If the queue is no longer stalled by a barrier then wake it.
            synchronized (this) {
                Message prev = null;
                Message p = mMessages;
                //找到同步屏障消息p
                while (p != null && (p.target != null || p.arg1 != token)) {
                    prev = p;
                    p = p.next;
                }
                if (p == null) {
                    throw new IllegalStateException("The specified message queue synchronization "
                            + " barrier token has not been posted or has already been removed.");
                }
                final boolean needWake;
                if (prev != null) {
                    // prev 的 next 指向 p 的下一条消息
                    prev.next = p.next;
                    needWake = false;
                } else {
                    mMessages = p.next;
                    needWake = mMessages == null || mMessages.target != null;
                }
                // 回收同步屏障消息
                p.recycleUnchecked();

                // If the loop is quitting then it is already awake.
                // We can assume mPtr != 0 when mQuitting is false.
                if (needWake && !mQuitting) {
                    nativeWake(mPtr);
                }
            }
        }
    }
}

通过以上的分析,对于同步屏障的原理已经了解了吧。在绘制流程中使用同步屏障,保证了在 VSYNC 信号到来时,绘制任务可以及时执行,避免造成界面卡顿。