import pandas as pd
import matplotlib.pyplot as plt
import scipy.interpolate as itp
1. 读取数据
ug_data = pd.read_csv(
"ug_detect.csv",
header=0,
encoding="gbk"
)
print("读取的数据:\n", ug_data)
temperature = ug_data['温度(?C)']
humidity = ug_data['相对湿度']
gas = ug_data['瓦斯(m?/min)']
co = ug_data['一氧化碳(m?/min)']
2.异常值处理
def defectsCop(data, threshold):
for i in range(len(data)):
if data[i] >= threshold:
data[i] = None
defectsCop(temperature, 60)
defectsCop(humidity, 200)
defectsCop(gas, 100)
defectsCop(co, 100)
3.插值处理
def seriesItp(data):
for i in range(len(data)):
if pd.isnull(data[i]):
x_list = [i - 1, i + 1]
y_list = [data[i - 1], data[i + 1]]
lagrange_poly = itp.lagrange(x_list, y_list)
data[i] = lagrange_poly(i)
seriesItp(temperature)
seriesItp(humidity)
seriesItp(gas)
seriesItp(co)
4.可视化
def plot_data(array):
t = range(len(array))
plt.plot(t, array)
plt.plot(t, array, 'pr')
plt.show()
plot_data(temperature)
plot_data(humidity)
plot_data(gas)
plot_data(co)
5.写入文件
all_data = pd.DataFrame(
{"温度":temperature,
"相对温度":humidity,
"瓦斯浓度":gas,
"一氧化碳浓度":co}
)
all_data.to_csv(
"all_data.csv",
index=False,
float_format="%0.2f",
encoding="utf-8"
)