#
# LangSmith追踪功能配置
#
# 导入操作系统相关功能
import os
from langchain_core.messages import SystemMessage, HumanMessage
# 导入base_url
from openai import base_url
# 从自定义模块导入密钥加载函数
from config.load_key import load_key
# 设置 LangSmith 追踪功能开启
os.environ["LANGSMITH_TRACING"] = "true"
# 设置 LangSmith 项目名称
os.environ["LANGSMITH_PROJECT"] = "firstLangChainDemo"
# 从配置文件加载 LangSmith API 密钥并设置环境变量
os.environ["LANGSMITH_API_KEY"] = load_key("LANGSMITH_API_KEY")
#
# OpenAI服务配置_001
#
#
# if not os.environ.get("OPENAI_API_KEY"):
# os.environ["OPENAI_API_KEY"] = load_key("OPENAI_API_KEY")
#
# from langchain.chat_models import init_chat_model
#
#
# model = init_chat_model("gpt-4o-mini", model_provider="openai", base_url="https://api.****")
#
# 创建任务_001
#
#
# from langchain_core.messages import HumanMessage, SystemMessage
#
# messages = [
#
# SystemMessage(content="帮我把下面这句话翻译成中文"),
#
# HumanMessage(content="Hello, how are you?")
# ]
#
# result = model.invoke(messages)
#
# print("完整返回对象:", result)
#
#
# OpenAI服务配置_002
#
#
# if not os.environ.get("OPENAI_API_KEY"):
# os.environ["OPENAI_API_KEY"] = load_key("OPENAI_API_KEY")
#
#
#
# 创建任务_002
#
#
# result = llm.invoke([SystemMessage(content="帮我把下面这句话翻译成中文"), HumanMessage(content="Hello, how are you?")])
#
# print("翻译结果:", result.content)
# print("完整返回对象:", result)
#
# OpenAI服务配置_003
#
# from langchain_community.chat_models import ChatTongyi
# from langchain_core.messages import SystemMessage, HumanMessage
# llm = ChatTongyi(api_key=load_key("TONGYI_API_KEY"), model="tongyi-v1.5-s-lite")
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = load_key("OPENAI_API_KEY")
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini", base_url="https://api.****")
#
# 创建任务_003
#
# llm.invoke([SystemMessage(content="帮我把下面这句话翻译成中文"), HumanMessage(content="Hello, how are you?")])
#result = llm.invoke([SystemMessage(content="Help me write a poem."), HumanMessage(content="What is the meaning of life?")])
result = llm.invoke([HumanMessage(content="你好,你是谁?能帮我解决什么问题?")])
print("结果:", result.content)
print("完整返回对象:", result)
import os
from config.load_key import load_key
os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_PROJECT"] = "firstLangChainDemo"
os.environ["LANGSMITH_API_KEY"] = load_key("LANGSMITH_API_KEY")
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = load_key("OPENAI_API_KEY")
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
llm = ChatOpenAI(model="gpt-4o-mini", base_url="https://api.****",
api_key=os.environ["OPENAI_API_KEY"], temperature=0.9)
for i in range(5):
result = llm.invoke([HumanMessage(content="你好,我姓孙帮我给孩子取一个名字?返回值的字数大于等于2个字,小于等于3个字")])
print("结果:", result.content)
print("完整返回对象:", result)