Java基础-集合

47 阅读6分钟

分类

集合有两个基本接口:Collecition和map image.png

image.png

List

  • 用于描述一个有序集合,可以通过迭代器访问或者get/set随机访问每个元素

ArrayList

  • 底层结构:数组
  • 扩容方式 默认length:10
 //1 判断当前数组长度是否满足要求
private void ensureExplicitCapacity(int minCapacity) {
   modCount++;

   // overflow-conscious code
   if (minCapacity - elementData.length > 0)
       grow(minCapacity);
}

//2. 首先长度扩充到1.5倍,判断是否符合要求
//3,判断是否超过Integer.MAX_VALUE
private void grow(int minCapacity) {
   // overflow-conscious code
   int oldCapacity = elementData.length;
   int newCapacity = oldCapacity + (oldCapacity >> 1);
   if (newCapacity - minCapacity < 0)
       newCapacity = minCapacity;
   if (newCapacity - MAX_ARRAY_SIZE > 0)
       newCapacity = hugeCapacity(minCapacity);//此时取MAX_VALUE
   // minCapacity is usually close to size, so this is a win:
   elementData = Arrays.copyOf(elementData, newCapacity);
}

为什么设置MAX_ARRAY_SIZE:

  • 防止溢出: 预留8字节空间避免数组大小达到真正的最大值时发生内存溢出
  • 兼容性考虑: 某些JVM实现在数组末尾需要额外的头部信息或填充字节
  • 保守估计: 这是一个保守的安全值,确保在各种JVM实现下都能正常工作

LinkedList

  • 底层结构:链表
  • 插入,删除简单,查找效率较低
  • 默认在链表尾插入新元素
public boolean add(E e) {
    linkLast(e);
    return true;
}

Set

  • 等同于Collection接口,无序集合,不允许添加重复的元素

HashSet

  • 继承AbstraceSet
  • 底层结构:HashMap,元素作为HashMap的key,value是一个虚拟对象

TreeSet

  • 一个有序集合,使用红黑树完成排列
  • 继承了NavigableSet->SortSet
public interface NavigableSet<E> extends SortedSet<E> 
  • 底层结构:TreeMap,元素作为avigableMap的key,value是一个虚拟对象

TreeSet继承NavigableSet与使用TreeMap的关系

  1. 继承NavigableSet的原因
  • 接口定义: NavigableSet定义了一套完整的有序集合操作规范
  • 功能丰富: 提供了诸如lower(), higher(), floor(), ceiling()等导航方法
  • 标准化: 保证TreeSet具备标准的有序Set行为
  1. 使用TreeMap作为实现的原因
  • 代码复用: TreeMap已经实现了红黑树的所有复杂操作
  • 功能完备: TreeMap天然支持有序映射,正好满足NavigableSet的需求
  • 一致性保证: TreeMap的排序逻辑可以直接用于TreeSet

Queue

  • 队列,先进先出模式

ArrayDeque

  • 底层结构:数组,继承Deque(双端队列)
  • 队头队尾可以添加删除元素
  • 初始化队列大小;翻倍
  • 扩容机制:翻倍
private void doubleCapacity() {
    assert head == tail;
    int p = head;
    int n = elements.length;
    int r = n - p; // number of elements to the right of p
    int newCapacity = n << 1;
    if (newCapacity < 0)
        throw new IllegalStateException("Sorry, deque too big");
    Object[] a = new Object[newCapacity];
    System.arraycopy(elements, p, a, 0, r);
    System.arraycopy(elements, 0, a, r, p);
    elements = a;
    head = 0;
    tail = n;
}

priority Queue

  • 底层数据结构:数组,使用堆进行排序
  • add():
//1. 调用offer
public boolean offer(E e) {
   if (e == null)
       throw new NullPointerException();
   modCount++;
   int i = size;
   if (i >= queue.length)
       grow(i + 1);
   size = i + 1;
   if (i == 0)
       queue[0] = e;
   else
       siftUp(i, e);
   return true;
}
2. 调用比较器进行比较
private void siftUp(int k, E x) {
   if (comparator != null)
       siftUpUsingComparator(k, x);
   else
       siftUpComparable(k, x);
}
//可以使用自定义比较器或者默认comparator进行比较
private void siftUpUsingComparator(int k, E x) {
   while (k > 0) {
       int parent = (k - 1) >>> 1;
       Object e = queue[parent];
       if (comparator.compare(x, (E) e) >= 0)
           break;
       queue[k] = e;
       k = parent;
   }
   queue[k] = x;
}
  • 扩容机制:。若当前容量小于64,则新容量为旧容量的两倍加2;否则增长50%。若计算出的新容量超过最大限制,则调用hugeCapacity处理。最后使用Arrays.copyOf完成数组扩容。
private void grow(int minCapacity) {
    int oldCapacity = queue.length;
    // Double size if small; else grow by 50%
    int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                                     (oldCapacity + 2) :
                                     (oldCapacity >> 1));
    // overflow-conscious code
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    queue = Arrays.copyOf(queue, newCapacity);
}

Map

  • 存储键值对

HashMap

  • 底层结构: 数组形式,每个元素是一个链表
//存储键值对的哈希表,是一个链表形式
transient Node<K,V>[] table;

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    }
//存储entry集合视图
transient Set<Map.Entry<K,V>> entrySet;
  • 添加元素: 当链表容量超过7,转化为红黑树
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
    //如果有hash冲突,开始遍历链表,判断key是否已经存在
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
        //如果已经是树结构,在树里面插入新节点
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    //如果节点数量超过了7,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                //同上,逐个判断是否key相同
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
  • remove
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
            
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}
//在removeTreeNode中,如果当前长度<8,则调用unTreeify
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                          boolean movable) {
   ...
    if (root == null
        || (movable
            && (root.right == null
                || (rl = root.left) == null
                || rl.left == null))) {
        tab[index] = first.untreeify(map);  // too small
        return;
    }
   ...

  • 扩容机制:
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
          //容量达到最大值
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 如果初始容量大于默认值,新的阈值和容量翻倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
      // 初始化情况
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {   
    // zero initial threshold signifies using defaults
    // 使用默认值
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
     // 设置新的阈值
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
    //数据迁移
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

TreeMap

  • 底层结构:红黑树
static final class Entry<K,V> implements Map.Entry<K,V> {
    K key;
    V value;
    Entry<K,V> left;
    Entry<K,V> right;
    Entry<K,V> parent;
    boolean color = BLACK;
   }
  • 插入
public V put(K key, V value) {
    Entry<K,V> t = root;
    if (t == null) {
        compare(key, key); // type (and possibly null) check

        root = new Entry<>(key, value, null);
        size = 1;
        modCount++;
        return null;
    }
    int cmp;
    Entry<K,V> parent;
    // split comparator and comparable paths
    Comparator<? super K> cpr = comparator;
    if (cpr != null) {
        do {
            parent = t;
            cmp = cpr.compare(key, t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);
        } while (t != null);
    }
    else {
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
        do {
            parent = t;
            cmp = k.compareTo(t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);
        } while (t != null);
    }
    Entry<K,V> e = new Entry<>(key, value, parent);
    if (cmp < 0)
        parent.left = e;
    else
        parent.right = e;
       //保持红黑树平衡
    fixAfterInsertion(e);
    ...
}