回溯法来了
先排序,然后就可以做剪枝
AC代码:
class Solution {
public:
vector<vector<int>> ans;
vector<int> path;
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
backtracing(candidates, target, 0);
return ans;
}
void backtracing(vector<int>& candidates, int target, int startIndex) {
if (target == 0) {
ans.push_back(path);
return;
}
if (startIndex >= candidates.size()) return;
for (int i = startIndex; i < candidates.size(); ++i) {
// 先对candidates排序,保证是升序排列的
if (target - candidates[i] < 0) break;
path.push_back(candidates[i]);
backtracing(candidates, target - candidates[i], i);
path.pop_back();
}
}
};
要处理重复值,不能有重复的组合,也就是对应于遍历的每一层,对应于每一个startIndex的for循环,我们不能选取重复值,要做到去重,我们可以先排序,然后再判断后面的元素是否已经选过了
AC代码:
class Solution {
public:
vector<vector<int>> ans;
vector<int> path;
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
backtracing(candidates, target, 0);
return ans;
}
void backtracing(vector<int>& candidates, int target, int startIndex) {
if (target == 0) {
ans.push_back(path);
return;
}
for (int i = startIndex; i < candidates.size(); ++i) {
// 剪枝
if (target - candidates[i] < 0) break;
// 去重,因为我们已经排好序了
if (i > startIndex && candidates[i - 1] == candidates[i]) continue;
path.push_back(candidates[i]);
backtracing(candidates, target - candidates[i], i + 1);
path.pop_back();
}
}
};
代码如下:
class Solution {
public:
vector<vector<string>> ans;
vector<string> path;
vector<vector<string>> partition(string s) {
backtracing(s, 0);
return ans;
}
void backtracing(string& s, int startIndex) {
if (startIndex >= s.length()) {
ans.push_back(path);
}
string str;
for (int i = startIndex; i < s.length(); ++i) {
str = s.substr(startIndex, i - startIndex + 1);
if (isPalindromic(str)) {
path.push_back(str);
backtracing(s, i + 1);
path.pop_back();
}
}
}
bool isPalindromic(string& s) {
for (int i = 0, j = s.length() - 1; i < j; i++, j--) {
if (s[i] != s[j]) return false;
}
return true;
}
};
// 针对回文子串优化
// 使用动态规划先计算出各个子串是否是回文串
class Solution {
private:
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
vector<vector<bool>> isPalindrome; // 放事先计算好的是否回文子串的结果
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome[startIndex][i]) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 不是回文,跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经添加的子串
}
}
void computePalindrome(const string& s) {
// isPalindrome[i][j] 代表 s[i:j](双边包括)是否是回文字串
isPalindrome.resize(s.size(), vector<bool>(s.size(), false)); // 根据字符串s, 刷新布尔矩阵的大小
for (int i = s.size() - 1; i >= 0; i--) {
// 需要倒序计算, 保证在i行时, i+1行已经计算好了
for (int j = i; j < s.size(); j++) {
if (j == i) {isPalindrome[i][j] = true;}
else if (j - i == 1) {isPalindrome[i][j] = (s[i] == s[j]);}
else {isPalindrome[i][j] = (s[i] == s[j] && isPalindrome[i+1][j-1]);}
}
}
}
public:
vector<vector<string>> partition(string s) {
result.clear();
path.clear();
computePalindrome(s);
backtracking(s, 0);
return result;
}
};