混沌学堂JAVA课程(1-7期)+专题课(308G)2023年---youkeit.xyz/4540/
科技提效引擎:混沌学堂 1-7 期 Java 课重塑高并发架构实战路径
一、高并发架构演进路线
混沌学堂提出的高并发架构"五阶能力模型":
public class ConcurrencyCapabilityModel {
// 基础能力
private boolean threadPoolMastery; // 线程池掌控
private boolean lockOptimization; // 锁优化
private boolean jvmTuning; // JVM调优
// 中间件能力
private boolean cacheMastery; // 缓存掌控
private boolean mqProficiency; // 消息队列精通
private boolean dbSharding; // 分库分表
// 架构能力
private boolean microservicesDesign; // 微服务设计
private boolean gatewayImplementation; // 网关实现
private boolean circuitBreakerPattern; // 熔断模式
// 云原生能力
private boolean containerization; // 容器化
private boolean serviceMesh; // 服务网格
private boolean autoScaling; // 自动伸缩
// 前沿能力
private boolean reactiveProgramming; // 响应式编程
private boolean serverlessArchitecture; // 无服务架构
private boolean aiOpsIntegration; // AI运维集成
public void evolve(int phase) {
switch(phase) {
case 1:
threadPoolMastery = true;
lockOptimization = true;
break;
case 2:
cacheMastery = true;
mqProficiency = true;
break;
case 3:
microservicesDesign = true;
circuitBreakerPattern = true;
break;
case 4:
containerization = true;
autoScaling = true;
break;
case 5:
reactiveProgramming = true;
serverlessArchitecture = true;
break;
}
}
}
二、并发编程核心实战
2.1 线程池深度优化
public class SmartThreadPool {
private static final int CORE_POOL_SIZE = Runtime.getRuntime().availableProcessors();
private static final int MAX_POOL_SIZE = CORE_POOL_SIZE * 2;
private static final int QUEUE_CAPACITY = 1000;
private static final long KEEP_ALIVE_TIME = 30L;
private ThreadPoolExecutor executor;
public SmartThreadPool() {
this.executor = new ThreadPoolExecutor(
CORE_POOL_SIZE,
MAX_POOL_SIZE,
KEEP_ALIVE_TIME,
TimeUnit.SECONDS,
new ResizableCapacityLinkedBlockingQueue<>(QUEUE_CAPACITY),
new NamedThreadFactory("biz-pool"),
new SmartRejectedExecutionHandler());
// 动态调整参数
new Thread(this::monitorAndAdjust).start();
}
private void monitorAndAdjust() {
while (true) {
try {
// 每10秒检查一次
Thread.sleep(10000);
// 动态调整核心线程数
double activeRatio = (double) executor.getActiveCount() / MAX_POOL_SIZE;
if (activeRatio > 0.8) {
executor.setCorePoolSize(Math.min(MAX_POOL_SIZE, executor.getCorePoolSize() + 2));
} else if (activeRatio < 0.3) {
executor.setCorePoolSize(Math.max(CORE_POOL_SIZE, executor.getCorePoolSize() - 1));
}
// 动态调整队列容量
int remainingCapacity = executor.getQueue().remainingCapacity();
if (remainingCapacity < QUEUE_CAPACITY * 0.2) {
((ResizableCapacityLinkedBlockingQueue<Runnable>) executor.getQueue())
.setCapacity(QUEUE_CAPACITY * 2);
}
} catch (Exception e) {
// 处理异常
}
}
}
// 可调整容量的阻塞队列
static class ResizableCapacityLinkedBlockingQueue<E> extends LinkedBlockingQueue<E> {
public ResizableCapacityLinkedBlockingQueue(int capacity) {
super(capacity);
}
public synchronized void setCapacity(int capacity) {
if (capacity < size()) {
throw new IllegalArgumentException("New capacity cannot be less than current size");
}
this.capacity = capacity;
}
}
// 智能拒绝策略
static class SmartRejectedExecutionHandler implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
if (!executor.isShutdown()) {
try {
// 先尝试放入队列
if (!executor.getQueue().offer(r, 1, TimeUnit.SECONDS)) {
// 队列已满,降级处理
System.out.println("Task rejected, executing fallback");
new Thread(r).start();
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
}
}
2.2 分布式锁演进方案
public class DistributedLockFactory {
private static final Map<LockType, LockStrategy> strategies = new EnumMap<>(LockType.class);
static {
// 初始化各种锁策略
strategies.put(LockType.REDIS, new RedisLockStrategy());
strategies.put(LockType.ZOOKEEPER, new ZookeeperLockStrategy());
strategies.put(LockType.DATABASE, new DatabaseLockStrategy());
}
public static DistributedLock createLock(LockType type, String lockKey, long expireTime) {
return strategies.get(type).createLock(lockKey, expireTime);
}
// Redis锁实现
static class RedisLockStrategy implements LockStrategy {
private final RedisTemplate<String, String> redisTemplate;
public RedisLockStrategy() {
this.redisTemplate = SpringContextHolder.getBean("redisTemplate");
}
@Override
public DistributedLock createLock(String lockKey, long expireTime) {
return new RedisDistributedLock(redisTemplate, lockKey, expireTime);
}
}
// Redis分布式锁实现
public static class RedisDistributedLock implements DistributedLock {
private static final String LOCK_PREFIX = "lock:";
private static final String LOCK_SUCCESS = "OK";
private static final String SET_IF_NOT_EXIST = "NX";
private static final String SET_WITH_EXPIRE_TIME = "PX";
private static final String RELEASE_SCRIPT =
"if redis.call('get', KEYS[1]) == ARGV[1] then " +
" return redis.call('del', KEYS[1]) " +
"else " +
" return 0 " +
"end";
private final RedisTemplate<String, String> redisTemplate;
private final String lockKey;
private final long expireTime;
private String lockValue;
public RedisDistributedLock(RedisTemplate<String, String> redisTemplate,
String lockKey, long expireTime) {
this.redisTemplate = redisTemplate;
this.lockKey = LOCK_PREFIX + lockKey;
this.expireTime = expireTime;
}
@Override
public boolean tryLock(long waitTime) throws InterruptedException {
long end = System.currentTimeMillis() + waitTime;
this.lockValue = UUID.randomUUID().toString();
while (System.currentTimeMillis() < end) {
if (Boolean.TRUE.equals(redisTemplate.execute(
(RedisCallback<Boolean>) connection ->
connection.set(lockKey.getBytes(),
lockValue.getBytes(),
Expiration.milliseconds(expireTime),
RedisStringCommands.SetOption.SET_IF_ABSENT))) {
return true;
}
Thread.sleep(100);
}
return false;
}
@Override
public void unlock() {
redisTemplate.execute(new DefaultRedisScript<>(RELEASE_SCRIPT, Long.class),
Collections.singletonList(lockKey),
lockValue);
}
}
// 锁类型枚举
public enum LockType {
REDIS, ZOOKEEPER, DATABASE
}
// 锁策略接口
interface LockStrategy {
DistributedLock createLock(String lockKey, long expireTime);
}
// 分布式锁接口
public interface DistributedLock {
boolean tryLock(long waitTime) throws InterruptedException;
void unlock();
}
}
三、性能压测与调优
3.1 JMeter压力测试方案
<!-- 混沌学堂推荐的JMeter测试计划模板 -->
<jmeterTestPlan version="1.2" properties="5.0" jmeter="5.3">
<hashTree>
<TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="高并发压测方案" enabled="true">
<boolProp name="TestPlan.functional_mode">false</boolProp>
<boolProp name="TestPlan.serialize_threadgroups">false</boolProp>
<elementProp name="TestPlan.user_defined_variables" elementType="Arguments" guiclass="ArgumentsPanel" testclass="Arguments" testname="用户定义变量" enabled="true">
<collectionProp name="Arguments.arguments">
<elementProp name="baseUrl" elementType="Argument">
<stringProp name="Argument.name">baseUrl</stringProp>
<stringProp name="Argument.value">http://api.example.com</stringProp>
<stringProp name="Argument.metadata">=</stringProp>
</elementProp>
<elementProp name="threadCount" elementType="Argument">
<stringProp name="Argument.name">threadCount</stringProp>
<stringProp name="Argument.value">500</stringProp>
<stringProp name="Argument.metadata">=</stringProp>
</elementProp>
</collectionProp>
</elementProp>
</TestPlan>
<hashTree>
<ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="并发测试组" enabled="true">
<intProp name="ThreadGroup.num_threads">${__P(threadCount,200)}</intProp>
<intProp name="ThreadGroup.ramp_time">60</intProp>
<longProp name="ThreadGroup.start_time">0</longProp>
<longProp name="ThreadGroup.end_time">0</longProp>
<boolProp name="ThreadGroup.scheduler">true</boolProp>
<stringProp name="ThreadGroup.duration">300</stringProp>
<stringProp name="ThreadGroup.delay">0</stringProp>
</ThreadGroup>
<hashTree>
<HTTPSamplerProxy guiclass="HttpTestSampleGui" testclass="HTTPSamplerProxy" testname="订单创建接口" enabled="true">
<elementProp name="HTTPsampler.Arguments" elementType="Arguments" guiclass="HTTPArgumentsPanel" testclass="Arguments" testname="用户定义的变量" enabled="true">
<collectionProp name="Arguments.arguments"/>
</elementProp>
<stringProp name="HTTPSampler.domain">${baseUrl}</stringProp>
<stringProp name="HTTPSampler.port"></stringProp>
<stringProp name="HTTPSampler.protocol">https</stringProp>
<stringProp name="HTTPSampler.path">/order/create</stringProp>
<stringProp name="HTTPSampler.method">POST</stringProp>
<boolProp name="HTTPSampler.follow_redirects">true</boolProp>
<boolProp name="HTTPSampler.auto_redirects">false</boolProp>
<boolProp name="HTTPSampler.use_keepalive">true</boolProp>
<boolProp name="HTTPSampler.DO_MULTIPART_POST">false</boolProp>
<stringProp name="HTTPSampler.embedded_url_re"></stringProp>
</HTTPSamplerProxy>
<hashTree>
<HeaderManager guiclass="HeaderPanel" testclass="HeaderManager" testname="HTTP头管理器" enabled="true">
<collectionProp name="HeaderManager.headers">
<elementProp name="" elementType="Header">
<stringProp name="Header.name">Content-Type</stringProp>
<stringProp name="Header.value">application/json</stringProp>
</elementProp>
</collectionProp>
</HeaderManager>
<hashTree/>
<ResultCollector guiclass="ViewResultsFullVisualizer" testclass="ResultCollector" testname="结果树" enabled="false"/>
<hashTree/>
</hashTree>
</hashTree>
</hashTree>
</hashTree>
</jmeterTestPlan>
3.2 Arthas诊断实战
# 混沌学堂Arthas诊断命令集
# 1. 监控方法调用
watch com.example.OrderService createOrder '{params, returnObj, throwExp}' -n 5 -x 3
# 2. 追踪调用链路
trace com.example.OrderService createOrder -n 5 --skipJDKMethod false
# 3. 监控JVM状态
dashboard -i 2000 -n 10
# 4. 方法调用统计
monitor -c 5 com.example.OrderService listOrders
# 5. 反编译类文件
jad com.example.OrderServiceImpl
# 6. 热修复代码
# 先使用jad反编译,修改后使用mc编译,再用redefine加载
jad --source-only com.example.OrderService > OrderService.java
# 修改OrderService.java
mc OrderService.java -d /tmp
redefine /tmp/com/example/OrderService.class
# 7. 生成火焰图
profiler start --event cpu
profiler stop --format svg -o /tmp/flamegraph.svg
# 8. 内存对象分析
heapdump /tmp/heapdump.hprof
四、架构设计模式
4.1 异步化处理方案
public class AsyncProcessor {
private final ExecutorService executor;
private final EventBus eventBus;
private final RedisTemplate<String, String> redisTemplate;
public AsyncProcessor() {
this.executor = Executors.newFixedThreadPool(
Runtime.getRuntime().availableProcessors() * 2,
new NamedThreadFactory("async-processor"));
this.eventBus = new AsyncEventBus(executor);
this.redisTemplate = SpringContextHolder.getBean("redisTemplate");
// 注册事件处理器
registerHandlers();
}
private void registerHandlers() {
eventBus.register(new OrderEventHandler());
eventBus.register(new PaymentEventHandler());
eventBus.register(new InventoryEventHandler());
}
public <T> CompletableFuture<T> submit(Callable<T> task) {
CompletableFuture<T> future = new CompletableFuture<>();
executor.submit(() -> {
try {
T result = task.call();
future.complete(result);
} catch (Exception e) {
future.completeExceptionally(e);
}
});
return future;
}
public void publishEvent(Object event) {
eventBus.post(event);
}
// 基于Redis的延迟队列
public void delayExecute(String queueName, Runnable task, long delay, TimeUnit unit) {
String taskId = UUID.randomUUID().toString();
String taskKey = "delay:" + taskId;
// 序列化任务
byte[] serializedTask = SerializationUtils.serialize(task);
// 存入Redis并设置过期时间
redisTemplate.opsForValue().set(taskKey, new String(serializedTask),
unit.toSeconds(delay), TimeUnit.SECONDS);
// 添加到期通知
redisTemplate.opsForZSet().add(queueName, taskId,
System.currentTimeMillis() + unit.toMillis(delay));
}
// 事件处理器示例
public static class OrderEventHandler {
@Subscribe
public void handleOrderCreated(OrderCreatedEvent event) {
// 处理订单创建事件
}
}
}
4.2 熔断降级策略
public class CircuitBreaker {
private final int failureThreshold;
private final long retryTimeout;
private final long timeout;
private volatile State state = State.CLOSED;
private volatile long lastFailureTime;
private volatile int consecutiveFailures;
public CircuitBreaker(int failureThreshold, long retryTimeout, long timeout) {
this.failureThreshold = failureThreshold;
this.retryTimeout = retryTimeout;
this.timeout = timeout;
}
public <T> T execute(Callable<T> callable) throws Exception {
if (state == State.OPEN) {
if (System.currentTimeMillis() - lastFailureTime > retryTimeout) {
state = State.HALF_OPEN;
} else {
throw new CircuitBreakerOpenException("Circuit breaker is open");
}
}
try {
Future<T> future = Executors.newSingleThreadExecutor()
.submit(callable);
T result = future.get(timeout, TimeUnit.MILLISECONDS);
if (state == State.HALF_OPEN) {
reset();
}
return result;
} catch (TimeoutException e) {
recordFailure();
throw new CircuitBreakerTimeoutException("Operation timed out", e);
} catch (Exception e) {
recordFailure();
throw e;
}
}
private void recordFailure() {
consecutiveFailures++;
lastFailureTime = System.currentTimeMillis();
if (consecutiveFailures >= failureThreshold || state == State.HALF_OPEN) {
state = State.OPEN;
}
}
private void reset() {
consecutiveFailures = 0;
state = State.CLOSED;
}
public State getState() {
return state;
}
public enum State {
CLOSED, OPEN, HALF_OPEN
}
// 使用示例
public static void main(String[] args) {
CircuitBreaker breaker = new CircuitBreaker(3, 10000, 1000);
try {
String result = breaker.execute(() -> {
// 调用外部服务
return HttpClient.get("http://external-service/api");
});
System.out.println(result);
} catch (CircuitBreakerOpenException e) {
// 熔断器打开时的降级