算法训练1-day4

47 阅读4分钟

今天的四道题是链表相关

  1. 24. 两两交换链表中的节点

可以画图,理清思路,构造一个虚拟头结点会容易很多;

注意将初始化时prev的下一个设置为head,或者先判断只有一个节点的情况;

注意更新prev时,是将prev更新为交换后的节点,也就是说原来是curr->next,交换后变为next->curr,此时prev应该更新为curr;

注意有奇数个节点的情况,也就是最后一次交换只有一个一个节点,此时nextNext为空。

AC代码:

class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        if (head == nullptr)
            return nullptr;
        ListNode dummyHead = ListNode(-1);
        ListNode* prev = &dummyHead;
        prev->next = head;
        ListNode* curr = head;
        ListNode* next = head->next;
        ListNode* nextNext = nullptr;
        while (next != nullptr) {
            nextNext = next->next;
            prev->next = next;
            curr->next = nextNext;
            next->next = curr;

            prev = curr;
            curr = nextNext;
            if (nextNext != nullptr) {
                next = nextNext->next;
            } else {
                next = nullptr;
            }
        }

        return dummyHead.next;
    }
};

class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        ListNode* dummyHead = new ListNode(0); // 设置一个虚拟头结点
        dummyHead->next = head; // 将虚拟头结点指向head,这样方便后面做删除操作
        ListNode* cur = dummyHead;
        while(cur->next != nullptr && cur->next->next != nullptr) {
            ListNode* tmp = cur->next; // 记录临时节点
            ListNode* tmp1 = cur->next->next->next; // 记录临时节点

            cur->next = cur->next->next;    // 步骤一
            cur->next->next = tmp;          // 步骤二
            cur->next->next->next = tmp1;   // 步骤三

            cur = cur->next->next; // cur移动两位,准备下一轮交换
        }
        ListNode* result = dummyHead->next;
        delete dummyHead;
        return result;
    }
};
  1. 19. 删除链表的倒数第 N 个结点
  • 先求长度,后求倒数第n个节点;
  • 使用栈记录节点,然后出栈,第n个就是我们需要的节点;
  • 双指针,fast先走n步,然后slow和fast同时走,fast到链表尾,slow就到了倒数第n个节点。 AC代码:
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        int size = 0;
        ListNode* curr = head;
        while (curr != nullptr) {
            size++;
            curr = curr->next;
        }
        ListNode* dummyHead = new ListNode();
        dummyHead->next = head;
        ListNode* prev = dummyHead;
        curr = head;
        for (int i = 0; i < size - n; i++) {
            prev = curr;
            curr = curr->next;
        }
        prev->next = curr->next;
        head = dummyHead->next;
        delete dummyHead;
        return head;
    }
};

//快慢指针
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode* dummyHead = new ListNode(0);
        dummyHead->next = head;
        ListNode* slow = dummyHead;
        ListNode* fast = dummyHead;
        while(n-- && fast != NULL) {
            fast = fast->next;
        }
        fast = fast->next; // fast再提前走一步,因为需要让slow指向删除节点的上一个节点
        while (fast != NULL) {
            fast = fast->next;
            slow = slow->next;
        }
        slow->next = slow->next->next; 
        
        // ListNode *tmp = slow->next;  C++释放内存的逻辑
        // slow->next = tmp->next;
        // delete tmp;
        
        return dummyHead->next;
    }
};
  1. 面试题 02.07. 链表相交

直观的思路,我们遍历两个链表,使用set保存所有节点,如果发现有相同节点,则直接返回;没有则返回NULL;

双指针法,先求两个链表的长度n,m,然后将指向较长的链表的指针移动abs(n-m)个单位(即对齐两个链表的末尾位置),此时我们只需要比较currA与currB是否相同即可,相同,返回;不相同,比较下一个。

AC代码:

class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        set<ListNode*> s;
        while(headA!=NULL){
            s.emplace(headA);
            headA=headA->next;
        }
        while(headB!=NULL){
            if(s.find(headB) == s.end()){
                headB=headB->next;
            }
            else{
                return headB;
            }
        }

        return NULL;
    }
};

class Solution {
public:
    ListNode* getIntersectionNode(ListNode* headA, ListNode* headB) {
        int n = 0, m = 0;
        ListNode*  = headA;
        ListNode* currB = headB;
        while (currA != NULL) {
            n++;
            currA = currA->next;
        }
        while (currB != NULL) {
            m++;
            currB = currB->next;
        }
        int gap = abs(n - m);
        currA = headA;
        currB = headB;
        if (m > n) {
            while (gap > 0) {
                currB = currB->next;
                gap--;
            }
        } else {
            while (gap > 0) {
                currA = currA->next;
                gap--;
            }
        }
        while (currA != NULL) {
            if (currA == currB) {
                return currA;
            }
            currA = currA->next;
            currB = currB->next;
        }
        return NULL;
    }
};

142. 环形链表 II

哈希表法,遍历链表中的每个节点,并将它记录下来;一旦遇到了此前遍历过的节点,就可以判定链表中存在环

快慢指针,fast和slow都从头结点出发,slow每次走一步,fast每次走两步;假设链表长度为n,环的长度为m,假如有环,则slow和fast必定在环内相遇,此时slow走过x+y,fast走过x+y+n(y+z),其中x为环外长度,y为slow在环内走过的距离,z为环剩下的长度,即n=x+y+zm=y+z,又因为fast的速度是slow的两倍,有2(x+y)=x+y+n(y+z),得x=(n-1)(y+z)+z,这就意味着,从头结点出发一个指针,从相遇节点也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是环形入口的节点

class Solution {
public:
    ListNode* detectCycle(ListNode* head) {
        if (head == NULL || head->next == NULL)
            return NULL;
        ListNode* fast = head;
        ListNode* slow = head;
        while (fast != NULL && fast->next != NULL) {
            slow = slow->next;
            fast = fast->next->next;
            if (fast == slow) {
                ListNode* curr = head;
                while (curr != slow) {
                    slow = slow->next;
                    curr = curr->next;
                }
                return curr;
            }
        }

        return NULL;
    }
};