🗜️💨 数据压缩:让数据"瘦身"的魔法

55 阅读9分钟

"数据压缩就像给文件减肥,不仅节省空间,还能让传输飞起来!" 📦⚡

🎯 什么是数据压缩?

想象一下,你是一个超级忙碌的快递员 📦。每天都要运送很多包裹,如果每个包裹都很大很重,那你的车很快就装不下了!

数据压缩就像是把包裹压缩成更小的尺寸,这样你就能运送更多包裹,而且速度更快!

🏃‍♂️ 核心思想:用时间换空间,用压缩换效率

未压缩:数据大小 100MB → 传输时间 10秒
压缩后:数据大小 10MB → 传输时间 1秒

传输速度提升:10倍! 🎉

🎨 数据压缩的四种类型

1. 存储压缩 - 让硬盘"装"更多 💾

生活比喻: 就像把衣服压缩袋装,原来一柜子的衣服现在只需要一个小袋子!

@Service
public class StorageCompressionService {
    
    // 使用GZIP压缩存储
    public byte[] compressData(byte[] data) {
        try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
             GZIPOutputStream gzos = new GZIPOutputStream(baos)) {
            
            gzos.write(data);
            gzos.finish();
            return baos.toByteArray();
        } catch (IOException e) {
            log.error("数据压缩失败", e);
            return data;
        }
    }
    
    // 解压缩数据
    public byte[] decompressData(byte[] compressedData) {
        try (ByteArrayInputStream bais = new ByteArrayInputStream(compressedData);
             GZIPInputStream gzis = new GZIPInputStream(bais);
             ByteArrayOutputStream baos = new ByteArrayOutputStream()) {
            
            byte[] buffer = new byte[1024];
            int len;
            while ((len = gzis.read(buffer)) != -1) {
                baos.write(buffer, 0, len);
            }
            return baos.toByteArray();
        } catch (IOException e) {
            log.error("数据解压缩失败", e);
            return compressedData;
        }
    }
    
    // 压缩字符串
    public String compressString(String text) {
        try {
            byte[] compressed = compressData(text.getBytes(StandardCharsets.UTF_8));
            return Base64.getEncoder().encodeToString(compressed);
        } catch (Exception e) {
            log.error("字符串压缩失败", e);
            return text;
        }
    }
    
    // 解压缩字符串
    public String decompressString(String compressedText) {
        try {
            byte[] compressed = Base64.getDecoder().decode(compressedText);
            byte[] decompressed = decompressData(compressed);
            return new String(decompressed, StandardCharsets.UTF_8);
        } catch (Exception e) {
            log.error("字符串解压缩失败", e);
            return compressedText;
        }
    }
}

文件压缩存储:

@Service
public class FileCompressionService {
    
    // 压缩文件
    public void compressFile(String inputPath, String outputPath) {
        try (FileInputStream fis = new FileInputStream(inputPath);
             FileOutputStream fos = new FileOutputStream(outputPath);
             GZIPOutputStream gzos = new GZIPOutputStream(fos)) {
            
            byte[] buffer = new byte[8192];
            int len;
            while ((len = fis.read(buffer)) != -1) {
                gzos.write(buffer, 0, len);
            }
            
            log.info("文件压缩完成: {} -> {}", inputPath, outputPath);
        } catch (IOException e) {
            log.error("文件压缩失败", e);
        }
    }
    
    // 解压缩文件
    public void decompressFile(String inputPath, String outputPath) {
        try (FileInputStream fis = new FileInputStream(inputPath);
             GZIPInputStream gzis = new GZIPInputStream(fis);
             FileOutputStream fos = new FileOutputStream(outputPath)) {
            
            byte[] buffer = new byte[8192];
            int len;
            while ((len = gzis.read(buffer)) != -1) {
                fos.write(buffer, 0, len);
            }
            
            log.info("文件解压缩完成: {} -> {}", inputPath, outputPath);
        } catch (IOException e) {
            log.error("文件解压缩失败", e);
        }
    }
    
    // 批量压缩文件
    public void compressMultipleFiles(List<String> inputPaths, String outputDir) {
        for (String inputPath : inputPaths) {
            String fileName = Paths.get(inputPath).getFileName().toString();
            String outputPath = Paths.get(outputDir, fileName + ".gz").toString();
            compressFile(inputPath, outputPath);
        }
    }
}

2. 传输压缩 - 让网络"飞"起来 🌐

生活比喻: 就像把大包裹压缩成小包裹,快递车能装更多,运输更快!

@Service
public class NetworkCompressionService {
    
    // HTTP响应压缩
    @RestController
    public class CompressedController {
        
        @GetMapping(value = "/api/data", produces = "application/json")
        public ResponseEntity<String> getData() {
            String data = generateLargeData();
            
            // 检查客户端是否支持压缩
            HttpHeaders headers = new HttpHeaders();
            headers.set("Content-Encoding", "gzip");
            headers.set("Content-Type", "application/json");
            
            // 压缩响应数据
            byte[] compressedData = compressData(data.getBytes());
            
            return ResponseEntity.ok()
                    .headers(headers)
                    .body(Base64.getEncoder().encodeToString(compressedData));
        }
        
        private String generateLargeData() {
            // 生成大量数据用于测试压缩
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < 1000; i++) {
                sb.append("这是重复的数据内容,用于测试压缩效果。");
            }
            return sb.toString();
        }
    }
    
    // WebSocket消息压缩
    @Component
    public class CompressedWebSocketHandler extends TextWebSocketHandler {
        
        @Override
        public void afterConnectionEstablished(WebSocketSession session) throws Exception {
            log.info("WebSocket连接已建立: {}", session.getId());
        }
        
        @Override
        protected void handleTextMessage(WebSocketSession session, TextMessage message) throws Exception {
            String payload = message.getPayload();
            
            // 压缩消息
            String compressedMessage = compressString(payload);
            
            // 发送压缩消息
            session.sendMessage(new TextMessage(compressedMessage));
        }
    }
    
    // RESTful API压缩配置
    @Configuration
    public class CompressionConfig {
        
        @Bean
        public FilterRegistrationBean<CompressionFilter> compressionFilter() {
            FilterRegistrationBean<CompressionFilter> registrationBean = new FilterRegistrationBean<>();
            registrationBean.setFilter(new CompressionFilter());
            registrationBean.addUrlPatterns("/api/*");
            return registrationBean;
        }
    }
    
    // 自定义压缩过滤器
    public class CompressionFilter implements Filter {
        
        @Override
        public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
                throws IOException, ServletException {
            
            HttpServletRequest httpRequest = (HttpServletRequest) request;
            HttpServletResponse httpResponse = (HttpServletResponse) response;
            
            // 检查是否支持压缩
            String acceptEncoding = httpRequest.getHeader("Accept-Encoding");
            if (acceptEncoding != null && acceptEncoding.contains("gzip")) {
                // 包装响应以支持压缩
                GzipResponseWrapper gzipResponse = new GzipResponseWrapper(httpResponse);
                chain.doFilter(request, gzipResponse);
                gzipResponse.finish();
            } else {
                chain.doFilter(request, response);
            }
        }
    }
}

3. 内存压缩 - 让RAM"装"更多 🧠

生活比喻: 就像把书压缩成电子版,同样的书架能放更多书!

@Service
public class MemoryCompressionService {
    private final Map<String, CompressedData> compressedCache = new ConcurrentHashMap<>();
    
    // 压缩内存中的数据
    public void storeCompressedData(String key, Object data) {
        try {
            // 序列化对象
            ByteArrayOutputStream baos = new ByteArrayOutputStream();
            ObjectOutputStream oos = new ObjectOutputStream(baos);
            oos.writeObject(data);
            oos.close();
            
            byte[] serializedData = baos.toByteArray();
            
            // 压缩数据
            byte[] compressedData = compressData(serializedData);
            
            // 存储压缩数据
            compressedCache.put(key, new CompressedData(compressedData, data.getClass()));
            
            log.info("数据已压缩存储: {}, 原始大小: {}, 压缩后大小: {}", 
                    key, serializedData.length, compressedData.length);
        } catch (IOException e) {
            log.error("内存压缩存储失败", e);
        }
    }
    
    // 获取并解压缩数据
    public Object getCompressedData(String key) {
        CompressedData compressedData = compressedCache.get(key);
        if (compressedData == null) {
            return null;
        }
        
        try {
            // 解压缩数据
            byte[] decompressedData = decompressData(compressedData.getData());
            
            // 反序列化对象
            ByteArrayInputStream bais = new ByteArrayInputStream(decompressedData);
            ObjectInputStream ois = new ObjectInputStream(bais);
            Object obj = ois.readObject();
            ois.close();
            
            return obj;
        } catch (IOException | ClassNotFoundException e) {
            log.error("内存解压缩失败", e);
            return null;
        }
    }
    
    // 压缩集合数据
    public <T> void storeCompressedCollection(String key, Collection<T> collection) {
        List<T> list = new ArrayList<>(collection);
        storeCompressedData(key, list);
    }
    
    @SuppressWarnings("unchecked")
    public <T> Collection<T> getCompressedCollection(String key) {
        Object obj = getCompressedData(key);
        if (obj instanceof Collection) {
            return (Collection<T>) obj;
        }
        return null;
    }
    
    private static class CompressedData {
        private final byte[] data;
        private final Class<?> type;
        
        CompressedData(byte[] data, Class<?> type) {
            this.data = data;
            this.type = type;
        }
        
        byte[] getData() {
            return data;
        }
        
        Class<?> getType() {
            return type;
        }
    }
}

4. 压缩算法选择 - 让压缩"智能"起来 🧠

生活比喻: 就像选择不同的打包方式,有的适合衣服,有的适合书籍!

@Service
public class CompressionAlgorithmService {
    
    public enum CompressionAlgorithm {
        GZIP, DEFLATE, LZ4, SNAPPY, BZIP2
    }
    
    // 根据数据类型选择最佳压缩算法
    public CompressionAlgorithm selectBestAlgorithm(byte[] data) {
        // 分析数据特征
        DataCharacteristics characteristics = analyzeData(data);
        
        if (characteristics.isTextData()) {
            return CompressionAlgorithm.GZIP; // 文本数据适合GZIP
        } else if (characteristics.isBinaryData()) {
            return CompressionAlgorithm.LZ4; // 二进制数据适合LZ4
        } else if (characteristics.isHighlyRepetitive()) {
            return CompressionAlgorithm.BZIP2; // 高重复数据适合BZIP2
        } else {
            return CompressionAlgorithm.SNAPPY; // 默认使用SNAPPY
        }
    }
    
    // 使用指定算法压缩数据
    public CompressedResult compressWithAlgorithm(byte[] data, CompressionAlgorithm algorithm) {
        long startTime = System.currentTimeMillis();
        
        byte[] compressedData;
        switch (algorithm) {
            case GZIP:
                compressedData = compressWithGzip(data);
                break;
            case DEFLATE:
                compressedData = compressWithDeflate(data);
                break;
            case LZ4:
                compressedData = compressWithLZ4(data);
                break;
            case SNAPPY:
                compressedData = compressWithSnappy(data);
                break;
            case BZIP2:
                compressedData = compressWithBzip2(data);
                break;
            default:
                compressedData = compressWithGzip(data);
        }
        
        long endTime = System.currentTimeMillis();
        
        return new CompressedResult(compressedData, algorithm, 
                endTime - startTime, data.length, compressedData.length);
    }
    
    // 自适应压缩
    public CompressedResult adaptiveCompress(byte[] data) {
        CompressionAlgorithm bestAlgorithm = selectBestAlgorithm(data);
        return compressWithAlgorithm(data, bestAlgorithm);
    }
    
    // 批量压缩测试
    public Map<CompressionAlgorithm, CompressedResult> testAllAlgorithms(byte[] data) {
        Map<CompressionAlgorithm, CompressedResult> results = new HashMap<>();
        
        for (CompressionAlgorithm algorithm : CompressionAlgorithm.values()) {
            try {
                CompressedResult result = compressWithAlgorithm(data, algorithm);
                results.put(algorithm, result);
            } catch (Exception e) {
                log.error("压缩算法测试失败: {}", algorithm, e);
            }
        }
        
        return results;
    }
    
    private byte[] compressWithGzip(byte[] data) {
        try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
             GZIPOutputStream gzos = new GZIPOutputStream(baos)) {
            gzos.write(data);
            gzos.finish();
            return baos.toByteArray();
        } catch (IOException e) {
            throw new RuntimeException("GZIP压缩失败", e);
        }
    }
    
    private byte[] compressWithDeflate(byte[] data) {
        Deflater deflater = new Deflater();
        deflater.setInput(data);
        deflater.finish();
        
        byte[] buffer = new byte[1024];
        ByteArrayOutputStream baos = new ByteArrayOutputStream();
        
        while (!deflater.finished()) {
            int count = deflater.deflate(buffer);
            baos.write(buffer, 0, count);
        }
        
        deflater.end();
        return baos.toByteArray();
    }
    
    private byte[] compressWithLZ4(byte[] data) {
        // LZ4压缩实现(需要添加LZ4依赖)
        return compressWithGzip(data); // 简化实现
    }
    
    private byte[] compressWithSnappy(byte[] data) {
        // Snappy压缩实现(需要添加Snappy依赖)
        return compressWithGzip(data); // 简化实现
    }
    
    private byte[] compressWithBzip2(byte[] data) {
        try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
             BZip2CompressorOutputStream bzos = new BZip2CompressorOutputStream(baos)) {
            bzos.write(data);
            bzos.finish();
            return baos.toByteArray();
        } catch (IOException e) {
            throw new RuntimeException("BZIP2压缩失败", e);
        }
    }
    
    private DataCharacteristics analyzeData(byte[] data) {
        // 简化的数据分析
        return new DataCharacteristics();
    }
    
    private static class DataCharacteristics {
        boolean isTextData() {
            return true; // 简化实现
        }
        
        boolean isBinaryData() {
            return false; // 简化实现
        }
        
        boolean isHighlyRepetitive() {
            return false; // 简化实现
        }
    }
    
    public static class CompressedResult {
        private final byte[] compressedData;
        private final CompressionAlgorithm algorithm;
        private final long compressionTime;
        private final int originalSize;
        private final int compressedSize;
        
        CompressedResult(byte[] compressedData, CompressionAlgorithm algorithm, 
                        long compressionTime, int originalSize, int compressedSize) {
            this.compressedData = compressedData;
            this.algorithm = algorithm;
            this.compressionTime = compressionTime;
            this.originalSize = originalSize;
            this.compressedSize = compressedSize;
        }
        
        public double getCompressionRatio() {
            return (double) compressedSize / originalSize;
        }
        
        public double getCompressionSpeed() {
            return (double) originalSize / compressionTime; // bytes per ms
        }
        
        // getters
        public byte[] getCompressedData() { return compressedData; }
        public CompressionAlgorithm getAlgorithm() { return algorithm; }
        public long getCompressionTime() { return compressionTime; }
        public int getOriginalSize() { return originalSize; }
        public int getCompressedSize() { return compressedSize; }
    }
}

🎯 数据压缩的实际应用

1. 数据库压缩存储 🗄️

@Service
public class DatabaseCompressionService {
    
    @Autowired
    private JdbcTemplate jdbcTemplate;
    
    // 压缩存储大文本字段
    public void storeCompressedText(String tableName, String columnName, String text, String id) {
        byte[] compressedData = compressData(text.getBytes(StandardCharsets.UTF_8));
        String compressedBase64 = Base64.getEncoder().encodeToString(compressedData);
        
        String sql = String.format("UPDATE %s SET %s = ? WHERE id = ?", tableName, columnName);
        jdbcTemplate.update(sql, compressedBase64, id);
        
        log.info("压缩文本已存储: {}, 原始大小: {}, 压缩后大小: {}", 
                id, text.length(), compressedBase64.length());
    }
    
    // 获取并解压缩文本
    public String getCompressedText(String tableName, String columnName, String id) {
        String sql = String.format("SELECT %s FROM %s WHERE id = ?", columnName, tableName);
        String compressedBase64 = jdbcTemplate.queryForObject(sql, String.class, id);
        
        if (compressedBase64 != null) {
            byte[] compressedData = Base64.getDecoder().decode(compressedBase64);
            byte[] decompressedData = decompressData(compressedData);
            return new String(decompressedData, StandardCharsets.UTF_8);
        }
        
        return null;
    }
    
    // 批量压缩存储
    public void batchStoreCompressedData(List<CompressedDataRecord> records) {
        String sql = "INSERT INTO compressed_data (id, compressed_content) VALUES (?, ?)";
        
        List<Object[]> batchArgs = records.stream()
                .map(record -> {
                    byte[] compressedData = compressData(record.getContent().getBytes());
                    String compressedBase64 = Base64.getEncoder().encodeToString(compressedData);
                    return new Object[]{record.getId(), compressedBase64};
                })
                .collect(Collectors.toList());
        
        jdbcTemplate.batchUpdate(sql, batchArgs);
        log.info("批量压缩存储完成: {} 条记录", records.size());
    }
    
    private static class CompressedDataRecord {
        private final String id;
        private final String content;
        
        CompressedDataRecord(String id, String content) {
            this.id = id;
            this.content = content;
        }
        
        String getId() { return id; }
        String getContent() { return content; }
    }
}

2. 缓存压缩存储 💾

@Service
public class CacheCompressionService {
    private final Map<String, CompressedCacheEntry> compressedCache = new ConcurrentHashMap<>();
    
    // 压缩存储到缓存
    public void putCompressed(String key, Object value) {
        try {
            // 序列化对象
            ByteArrayOutputStream baos = new ByteArrayOutputStream();
            ObjectOutputStream oos = new ObjectOutputStream(baos);
            oos.writeObject(value);
            oos.close();
            
            byte[] serializedData = baos.toByteArray();
            
            // 压缩数据
            byte[] compressedData = compressData(serializedData);
            
            // 存储压缩数据
            compressedCache.put(key, new CompressedCacheEntry(compressedData, System.currentTimeMillis()));
            
            log.info("数据已压缩缓存: {}, 压缩比: {}", key, 
                    (double) compressedData.length / serializedData.length);
        } catch (IOException e) {
            log.error("缓存压缩存储失败", e);
        }
    }
    
    // 获取并解压缩缓存数据
    public Object getCompressed(String key) {
        CompressedCacheEntry entry = compressedCache.get(key);
        if (entry == null) {
            return null;
        }
        
        try {
            // 解压缩数据
            byte[] decompressedData = decompressData(entry.getData());
            
            // 反序列化对象
            ByteArrayInputStream bais = new ByteArrayInputStream(decompressedData);
            ObjectInputStream ois = new ObjectInputStream(bais);
            Object obj = ois.readObject();
            ois.close();
            
            return obj;
        } catch (IOException | ClassNotFoundException e) {
            log.error("缓存解压缩失败", e);
            return null;
        }
    }
    
    // 清理过期缓存
    public void cleanupExpiredCache(long maxAgeMillis) {
        long currentTime = System.currentTimeMillis();
        
        compressedCache.entrySet().removeIf(entry -> {
            long age = currentTime - entry.getValue().getTimestamp();
            return age > maxAgeMillis;
        });
        
        log.info("过期缓存已清理");
    }
    
    private static class CompressedCacheEntry {
        private final byte[] data;
        private final long timestamp;
        
        CompressedCacheEntry(byte[] data, long timestamp) {
            this.data = data;
            this.timestamp = timestamp;
        }
        
        byte[] getData() { return data; }
        long getTimestamp() { return timestamp; }
    }
}

3. 消息队列压缩 📨

@Service
public class MessageCompressionService {
    
    @Autowired
    private RabbitTemplate rabbitTemplate;
    
    // 发送压缩消息
    public void sendCompressedMessage(String queueName, Object message) {
        try {
            // 序列化消息
            ByteArrayOutputStream baos = new ByteArrayOutputStream();
            ObjectOutputStream oos = new ObjectOutputStream(baos);
            oos.writeObject(message);
            oos.close();
            
            byte[] serializedMessage = baos.toByteArray();
            
            // 压缩消息
            byte[] compressedMessage = compressData(serializedMessage);
            
            // 发送压缩消息
            rabbitTemplate.convertAndSend(queueName, compressedMessage);
            
            log.info("压缩消息已发送: {}, 压缩比: {}", queueName, 
                    (double) compressedMessage.length / serializedMessage.length);
        } catch (IOException e) {
            log.error("消息压缩发送失败", e);
        }
    }
    
    // 接收并解压缩消息
    @RabbitListener(queues = "compressed.queue")
    public void receiveCompressedMessage(byte[] compressedMessage) {
        try {
            // 解压缩消息
            byte[] decompressedMessage = decompressData(compressedMessage);
            
            // 反序列化消息
            ByteArrayInputStream bais = new ByteArrayInputStream(decompressedMessage);
            ObjectInputStream ois = new ObjectInputStream(bais);
            Object message = ois.readObject();
            ois.close();
            
            // 处理消息
            processMessage(message);
            
        } catch (IOException | ClassNotFoundException e) {
            log.error("消息解压缩失败", e);
        }
    }
    
    private void processMessage(Object message) {
        log.info("处理解压缩消息: {}", message);
    }
}

🛡️ 数据压缩的注意事项

1. 压缩性能权衡 ⚖️

@Service
public class CompressionPerformanceService {
    
    // 根据数据大小选择压缩策略
    public CompressionStrategy selectCompressionStrategy(byte[] data) {
        int dataSize = data.length;
        
        if (dataSize < 1024) {
            return CompressionStrategy.NO_COMPRESSION; // 小数据不压缩
        } else if (dataSize < 10240) {
            return CompressionStrategy.FAST_COMPRESSION; // 中等数据快速压缩
        } else {
            return CompressionStrategy.HIGH_COMPRESSION; // 大数据高压缩
        }
    }
    
    // 压缩性能测试
    public CompressionBenchmark benchmarkCompression(byte[] data) {
        Map<CompressionAlgorithm, CompressedResult> results = new HashMap<>();
        
        for (CompressionAlgorithm algorithm : CompressionAlgorithm.values()) {
            long startTime = System.nanoTime();
            CompressedResult result = compressWithAlgorithm(data, algorithm);
            long endTime = System.nanoTime();
            
            result.setCompressionTime(endTime - startTime);
            results.put(algorithm, result);
        }
        
        return new CompressionBenchmark(results);
    }
    
    private enum CompressionStrategy {
        NO_COMPRESSION, FAST_COMPRESSION, HIGH_COMPRESSION
    }
    
    private static class CompressionBenchmark {
        private final Map<CompressionAlgorithm, CompressedResult> results;
        
        CompressionBenchmark(Map<CompressionAlgorithm, CompressedResult> results) {
            this.results = results;
        }
        
        CompressionAlgorithm getBestAlgorithm() {
            return results.entrySet().stream()
                    .min((a, b) -> Double.compare(a.getValue().getCompressionRatio(), 
                                                 b.getValue().getCompressionRatio()))
                    .map(Map.Entry::getKey)
                    .orElse(CompressionAlgorithm.GZIP);
        }
    }
}

2. 压缩错误处理 🛡️

@Service
public class RobustCompressionService {
    
    // 带重试的压缩
    public byte[] compressWithRetry(byte[] data, int maxRetries) {
        Exception lastException = null;
        
        for (int i = 0; i < maxRetries; i++) {
            try {
                return compressData(data);
            } catch (Exception e) {
                lastException = e;
                log.warn("压缩失败,重试 {}/{}", i + 1, maxRetries, e);
                
                // 等待一段时间后重试
                try {
                    Thread.sleep(100 * (i + 1));
                } catch (InterruptedException ie) {
                    Thread.currentThread().interrupt();
                    break;
                }
            }
        }
        
        log.error("压缩失败,已达到最大重试次数", lastException);
        return data; // 返回原始数据
    }
    
    // 压缩数据验证
    public boolean validateCompression(byte[] originalData, byte[] compressedData) {
        try {
            byte[] decompressedData = decompressData(compressedData);
            return Arrays.equals(originalData, decompressedData);
        } catch (Exception e) {
            log.error("压缩数据验证失败", e);
            return false;
        }
    }
}

📊 数据压缩监控:让性能可视化

@Component
public class CompressionMonitor {
    private final MeterRegistry meterRegistry;
    private final Counter compressionCounter;
    private final Timer compressionTimer;
    private final Gauge compressionRatio;
    
    public CompressionMonitor(MeterRegistry meterRegistry) {
        this.meterRegistry = meterRegistry;
        this.compressionCounter = Counter.builder("compression.count").register(meterRegistry);
        this.compressionTimer = Timer.builder("compression.duration").register(meterRegistry);
        this.compressionRatio = Gauge.builder("compression.ratio").register(meterRegistry, this, CompressionMonitor::getAverageCompressionRatio);
    }
    
    public void recordCompression(Duration duration, double ratio) {
        compressionCounter.increment();
        compressionTimer.record(duration);
        updateCompressionRatio(ratio);
    }
    
    private double getAverageCompressionRatio() {
        // 返回平均压缩比
        return 0.0;
    }
    
    private void updateCompressionRatio(double ratio) {
        // 更新压缩比统计
    }
}

🎉 总结:数据压缩让存储"瘦身"成功

数据压缩就像生活中的各种"压缩"技巧:

  • 存储压缩 = 把衣服压缩袋装 📦
  • 传输压缩 = 把包裹压缩运输 🚚
  • 内存压缩 = 把书压缩成电子版 📱
  • 算法选择 = 选择最适合的打包方式 🎯

通过合理使用数据压缩,我们可以:

  • 🚀 大幅减少存储空间
  • 💰 降低传输成本
  • ⚡ 提高传输速度
  • 🎯 优化系统性能

记住:数据压缩不是万能的,但它是空间优化的利器! 合理使用数据压缩,让你的Java应用存储更高效! ✨


"数据压缩就像魔法,让大数据变小,让传输变快!" 🪄🗜️