递归函数
递归函数的定义和格式
递归是一种常用的解决问题的方法,特别适用于解决可以被分解为类似子问题的问题。递归函数通常由两个主要部分组成:起始条件(或基线条件)和递归规则(或递归关系)。 起始条件:一个递归的终止条件,确保递归不会无限进行。它处理最简单的情况并返回结果。
递归规则:在这个部分,函数会调用自身,以解决一个更小的子问题。
基本结构
// 起始条件
if (base condition) {
return base case result
} else {
// 递归规则
return recursiveFunction(smaller parameters)
}
}
( 二 ) 案例一:计算累加
计算一个整数的累加是一个经典的递归问题。假设我们要计算 n 的累加和,记作 f(n) = 1 + 2 + 3 + ... + n ,其定义为:
def factorial(n: Int): Int = {
if (n == 0) {
1 // 起始条件
} else {
n + factorial(n - 1) // 递归规则
}
}
案例二: 整数的阶乘
计算一个整数的阶乘是一个经典的递归问题。假设我们要计算 n 的阶乘,记作 n!=123*4...*n,其定义为:
def factorial(n: Int): Int = {
if (n == 0) {
1 // 起始条件
} else {
n * factorial(n - 1) // 递归规则
}
}