【大数据】全球大学排名数据可视化分析系统 计算机毕业设计项目 Hadoop+Spark环境配置 数据科学与大数据技术 附源码+文档+讲解

28 阅读5分钟

前言

💖💖作者:计算机程序员小杨 💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💕💕文末获取源码联系 计算机程序员小杨 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目 计算机毕业设计选题 💜💜

一.开发工具简介

大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

二.系统内容简介

全球大学排名数据可视化分析系统是基于Hadoop+Spark大数据技术栈构建的智能分析平台,采用Django作为后端框架,Vue+ElementUI+Echarts实现前端交互与数据可视化展示。系统通过HDFS存储海量高校排名数据,利用Spark SQL和Spark MLlib进行分布式计算与机器学习建模,结合Pandas和NumPy完成数据清洗、统计分析等预处理工作。系统核心功能涵盖用户权限管理、全球大学排名数据的增删改查、基于K-Means等算法的院校聚类分析、多维度竞争实力对比、全球高等教育格局态势分析、区域内院校竞争力评估以及综合数据大屏展示。通过对QS、Times等权威排名数据进行多源融合与深度挖掘,系统能够揭示不同国家和地区高校的发展特征、学科优势分布及竞争态势变化趋势,为教育管理部门政策制定、高校战略规划以及学生择校决策提供数据支撑,实现从原始数据采集到智能分析决策的全流程闭环。

三.系统功能演示

全球大学排名数据可视化分析系统

四.系统界面展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

五.系统源码展示


from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler, StandardScaler
from pyspark.ml.clustering import KMeans
from pyspark.sql.functions import col, avg, rank, dense_rank, count, sum as spark_sum, when
from pyspark.sql.window import Window
from django.http import JsonResponse
from django.views import View
import pandas as pd
import numpy as np
import json
spark = SparkSession.builder.appName("GlobalUniversityRanking").config("spark.executor.memory", "4g").config("spark.driver.memory", "2g").getOrCreate()
class UniversityClusteringView(View):
    def post(self, request):
        params = json.loads(request.body)
        cluster_num = params.get('cluster_num', 5)
        features = params.get('features', ['academic_score', 'employer_score', 'faculty_ratio', 'citations_score', 'international_score'])
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/university_db").option("dbtable", "global_university_ranking").option("user", "root").option("password", "password").load()
        df_filtered = df.filter(col("ranking_year") == 2024).na.drop(subset=features)
        assembler = VectorAssembler(inputCols=features, outputCol="raw_features")
        df_assembled = assembler.transform(df_filtered)
        scaler = StandardScaler(inputCol="raw_features", outputCol="features", withStd=True, withMean=True)
        scaler_model = scaler.fit(df_assembled)
        df_scaled = scaler_model.transform(df_assembled)
        kmeans = KMeans(k=cluster_num, seed=42, maxIter=50, featuresCol="features", predictionCol="cluster")
        kmeans_model = kmeans.fit(df_scaled)
        df_clustered = kmeans_model.transform(df_scaled)
        cluster_stats = df_clustered.groupBy("cluster").agg(count("university_id").alias("university_count"),avg("academic_score").alias("avg_academic"),avg("employer_score").alias("avg_employer"),avg("faculty_ratio").alias("avg_faculty"),avg("citations_score").alias("avg_citations"),avg("international_score").alias("avg_international"))
        cluster_result = df_clustered.select("university_id", "university_name", "country", "cluster").toPandas()
        stats_result = cluster_stats.toPandas()
        result_data = {"cluster_distribution": cluster_result.to_dict(orient='records'),"cluster_statistics": stats_result.to_dict(orient='records'),"cluster_centers": kmeans_model.clusterCenters()}
        return JsonResponse({"code": 200, "message": "聚类分析完成", "data": result_data})
class CompetitivenessAnalysisView(View):
    def post(self, request):
        params = json.loads(request.body)
        target_university_id = params.get('university_id')
        compare_universities = params.get('compare_list', [])
        year_range = params.get('year_range', [2020, 2024])
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/university_db").option("dbtable", "global_university_ranking").option("user", "root").option("password", "password").load()
        all_universities = [target_university_id] + compare_universities
        df_filtered = df.filter((col("university_id").isin(all_universities)) & (col("ranking_year").between(year_range[0], year_range[1])))
        window_spec = Window.partitionBy("ranking_year").orderBy(col("overall_score").desc())
        df_ranked = df_filtered.withColumn("global_rank_position", rank().over(window_spec))
        trend_df = df_ranked.groupBy("university_id", "university_name", "ranking_year").agg(avg("overall_score").alias("avg_overall_score"),avg("academic_score").alias("avg_academic_score"),avg("global_rank_position").alias("avg_rank"))
        trend_result = trend_df.orderBy("university_id", "ranking_year").toPandas()
        strength_cols = ["academic_score", "employer_score", "faculty_ratio", "citations_score", "international_score", "research_output"]
        latest_year = year_range[1]
        df_latest = df_filtered.filter(col("ranking_year") == latest_year)
        radar_data = df_latest.select("university_id", "university_name", *strength_cols).toPandas()
        radar_normalized = radar_data.copy()
        for col_name in strength_cols:
            max_val = radar_normalized[col_name].max()
            min_val = radar_normalized[col_name].min()
            radar_normalized[col_name] = (radar_normalized[col_name] - min_val) / (max_val - min_val) * 100 if max_val != min_val else 50
        competitive_index = df_latest.withColumn("competitive_score",(col("academic_score") * 0.3 + col("employer_score") * 0.2 + col("citations_score") * 0.25 + col("international_score") * 0.15 + col("faculty_ratio") * 0.1))
        competitive_result = competitive_index.select("university_id", "university_name", "competitive_score").orderBy(col("competitive_score").desc()).toPandas()
        result_data = {"trend_analysis": trend_result.to_dict(orient='records'),"strength_radar": radar_normalized.to_dict(orient='records'),"competitive_ranking": competitive_result.to_dict(orient='records')}
        return JsonResponse({"code": 200, "message": "竞争实力分析完成", "data": result_data})
class GlobalPatternAnalysisView(View):
    def post(self, request):
        params = json.loads(request.body)
        analysis_year = params.get('year', 2024)
        top_n = params.get('top_n', 500)
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/university_db").option("dbtable", "global_university_ranking").option("user", "root").option("password", "password").load()
        df_year = df.filter((col("ranking_year") == analysis_year) & (col("global_rank") <= top_n))
        country_stats = df_year.groupBy("country").agg(count("university_id").alias("university_count"),avg("overall_score").alias("avg_score"),spark_sum(when(col("global_rank") <= 50, 1).otherwise(0)).alias("top50_count"),spark_sum(when(col("global_rank") <= 100, 1).otherwise(0)).alias("top100_count"))
        country_result = country_stats.orderBy(col("university_count").desc()).toPandas()
        region_mapping = {"USA": "North America", "Canada": "North America", "UK": "Europe", "Germany": "Europe", "France": "Europe", "China": "Asia", "Japan": "Asia", "Singapore": "Asia", "Australia": "Oceania"}
        df_with_region = df_year.withColumn("region", when(col("country") == "USA", "North America").when(col("country") == "Canada", "North America").when(col("country").isin(["UK", "Germany", "France", "Netherlands", "Switzerland"]), "Europe").when(col("country").isin(["China", "Japan", "Singapore", "South Korea", "Hong Kong"]), "Asia").when(col("country").isin(["Australia", "New Zealand"]), "Oceania").otherwise("Other"))
        region_stats = df_with_region.groupBy("region").agg(count("university_id").alias("university_count"),avg("overall_score").alias("avg_score"),avg("academic_score").alias("avg_academic"),avg("research_output").alias("avg_research"))
        region_result = region_stats.orderBy(col("university_count").desc()).toPandas()
        discipline_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/university_db").option("dbtable", "university_discipline_ranking").option("user", "root").option("password", "password").load()
        discipline_filtered = discipline_df.filter((col("ranking_year") == analysis_year) & (col("discipline_rank") <= 100))
        discipline_country = discipline_filtered.groupBy("country", "discipline_name").agg(count("university_id").alias("discipline_count"))
        window_discipline = Window.partitionBy("discipline_name").orderBy(col("discipline_count").desc())
        discipline_top = discipline_country.withColumn("rank", dense_rank().over(window_discipline)).filter(col("rank") <= 5)
        discipline_result = discipline_top.orderBy("discipline_name", "rank").toPandas()
        result_data = {"country_distribution": country_result.to_dict(orient='records'),"region_analysis": region_result.to_dict(orient='records'),"discipline_advantage": discipline_result.to_dict(orient='records')}
        return JsonResponse({"code": 200, "message": "全球格局分析完成", "data": result_data})

六.系统文档展示

在这里插入图片描述

结束

💕💕文末获取源码联系 计算机程序员小杨