基于大数据的汽车保险数据可视化分析系统【python、Hadoop、spark、毕设、课设、数据爬取、推荐算法、计算机毕业设计实战项目、自然语言处理】

37 阅读6分钟

💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目

@TOC

基于大数据的汽车保险数据可视化分析系统介绍

《基于大数据的汽车保险数据可视化分析系统》是一套集数据采集、存储、处理、分析与可视化展示于一体的综合性大数据应用平台,该系统采用Hadoop分布式存储架构和Spark大数据计算引擎作为核心技术底层,通过HDFS实现海量汽车保险数据的可靠存储,利用Spark SQL进行高效的数据查询与处理,并结合Python的Pandas、NumPy等科学计算库进行深度数据分析。系统提供Python+Django和Java+Spring Boot两套完整的后端解决方案,前端采用Vue框架配合ElementUI组件库构建现代化的用户界面,通过Echarts图表库实现丰富的数据可视化效果。在功能架构上,系统涵盖了完整的用户权限管理体系,包括用户管理、个人信息维护等基础功能,核心业务模块围绕汽车保险数据管理展开,提供客户画像分析、财务效益分析、保险产品分析、市场营销分析、风险管理分析等五大专业分析维度,通过多维度的数据挖掘与统计分析,帮助保险公司深入了解客户特征、优化产品结构、制定精准营销策略、识别潜在风险点,最终通过数据大屏可视化模块将分析结果以直观的图表形式展现,为管理层决策提供科学的数据支撑,充分体现了大数据技术在传统保险行业数字化转型中的重要价值。

基于大数据的汽车保险数据可视化分析系统演示视频

演示视频

基于大数据的汽车保险数据可视化分析系统演示图片

保费理赔关系分析.png

教育水平与收入关系.png

客户群体盈利能力.png

收入保费支付能力.png

数据大屏上.png

数据大屏下.png

性别与年龄分析.png

基于大数据的汽车保险数据可视化分析系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.ml.feature import Bucketizer
from pyspark.ml.stat import Correlation
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
def analyze_customer_profile(insurance_data_path):
    spark = SparkSession.builder.appName("CustomerProfileAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
    df = spark.read.option("header", "true").option("inferSchema", "true").csv(insurance_data_path)
    age_bucketizer = Bucketizer(splits=[0, 25, 35, 45, 55, 65, 100], inputCol="age", outputCol="age_group")
    df_with_age_groups = age_bucketizer.transform(df)
    customer_profile = df_with_age_groups.groupBy("age_group", "gender", "city").agg(
        count("customer_id").alias("customer_count"),
        avg("annual_premium").alias("avg_premium"),
        sum("claim_amount").alias("total_claims"),
        avg("claim_frequency").alias("avg_claim_freq"),
        stddev("annual_premium").alias("premium_std")
    ).orderBy("age_group", "gender")
    high_value_customers = df.filter(col("annual_premium") > 5000).groupBy("city").agg(
        count("customer_id").alias("high_value_count"),
        avg("annual_premium").alias("avg_high_value_premium"),
        max("annual_premium").alias("max_premium")
    ).orderBy(desc("high_value_count"))
    customer_behavior = df.groupBy("customer_id").agg(
        countDistinct("policy_type").alias("policy_diversity"),
        sum("annual_premium").alias("total_premium"),
        avg("claim_amount").alias("avg_claim_amount"),
        datediff(current_date(), col("first_policy_date")).alias("customer_tenure")
    )
    loyalty_segments = customer_behavior.withColumn("loyalty_score", 
        when(col("customer_tenure") > 1095, 3)
        .when(col("customer_tenure") > 365, 2)
        .otherwise(1)
    ).groupBy("loyalty_score").agg(
        count("customer_id").alias("segment_size"),
        avg("total_premium").alias("avg_segment_premium")
    )
    result_profile = customer_profile.toPandas()
    result_high_value = high_value_customers.toPandas()
    result_loyalty = loyalty_segments.toPandas()
    spark.stop()
    return {
        "customer_profile": result_profile.to_dict('records'),
        "high_value_customers": result_high_value.to_dict('records'),
        "loyalty_segments": result_loyalty.to_dict('records')
    }
def analyze_risk_management(claims_data_path, policy_data_path):
    spark = SparkSession.builder.appName("RiskManagementAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()
    claims_df = spark.read.option("header", "true").option("inferSchema", "true").csv(claims_data_path)
    policy_df = spark.read.option("header", "true").option("inferSchema", "true").csv(policy_data_path)
    combined_df = claims_df.join(policy_df, "policy_id", "inner")
    risk_factors = combined_df.groupBy("vehicle_type", "driver_age_group", "region").agg(
        count("claim_id").alias("total_claims"),
        sum("claim_amount").alias("total_claim_amount"),
        avg("claim_amount").alias("avg_claim_amount"),
        countDistinct("policy_id").alias("policies_with_claims")
    )
    policy_exposure = policy_df.groupBy("vehicle_type", "driver_age_group", "region").agg(
        count("policy_id").alias("total_policies"),
        sum("annual_premium").alias("total_premiums")
    )
    risk_analysis = risk_factors.join(policy_exposure, ["vehicle_type", "driver_age_group", "region"], "outer").fillna(0)
    risk_metrics = risk_analysis.withColumn("claim_frequency", 
        when(col("total_policies") > 0, col("total_claims") / col("total_policies")).otherwise(0)
    ).withColumn("loss_ratio", 
        when(col("total_premiums") > 0, col("total_claim_amount") / col("total_premiums")).otherwise(0)
    ).withColumn("risk_score", 
        col("claim_frequency") * 0.4 + col("loss_ratio") * 0.6
    )
    high_risk_segments = risk_metrics.filter(col("risk_score") > 0.3).orderBy(desc("risk_score"))
    fraud_indicators = combined_df.filter(col("claim_amount") > 10000).groupBy("policy_id").agg(
        count("claim_id").alias("high_value_claims"),
        sum("claim_amount").alias("total_suspicious_amount"),
        avg("days_to_report").alias("avg_report_delay")
    ).filter(col("high_value_claims") > 2 | col("avg_report_delay") > 30)
    seasonal_risk = combined_df.withColumn("claim_month", month(col("claim_date"))).groupBy("claim_month").agg(
        count("claim_id").alias("monthly_claims"),
        avg("claim_amount").alias("avg_monthly_amount")
    ).orderBy("claim_month")
    result_risk_metrics = risk_metrics.toPandas()
    result_high_risk = high_risk_segments.toPandas()
    result_fraud = fraud_indicators.toPandas()
    result_seasonal = seasonal_risk.toPandas()
    spark.stop()
    return {
        "risk_metrics": result_risk_metrics.to_dict('records'),
        "high_risk_segments": result_high_risk.to_dict('records'),
        "fraud_indicators": result_fraud.to_dict('records'),
        "seasonal_trends": result_seasonal.to_dict('records')
    }
def analyze_financial_efficiency(financial_data_path, policy_data_path):
    spark = SparkSession.builder.appName("FinancialEfficiencyAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()
    financial_df = spark.read.option("header", "true").option("inferSchema", "true").csv(financial_data_path)
    policy_df = spark.read.option("header", "true").option("inferSchema", "true").csv(policy_data_path)
    combined_financial = financial_df.join(policy_df, "policy_id", "inner")
    monthly_revenue = combined_financial.withColumn("revenue_month", date_format(col("payment_date"), "yyyy-MM")).groupBy("revenue_month").agg(
        sum("premium_amount").alias("total_revenue"),
        sum("claim_payout").alias("total_payouts"),
        count("policy_id").alias("active_policies"),
        countDistinct("customer_id").alias("unique_customers")
    ).withColumn("net_profit", col("total_revenue") - col("total_payouts")).withColumn("profit_margin", 
        when(col("total_revenue") > 0, col("net_profit") / col("total_revenue") * 100).otherwise(0)
    )
    product_profitability = combined_financial.groupBy("product_type").agg(
        sum("premium_amount").alias("product_revenue"),
        sum("claim_payout").alias("product_claims"),
        count("policy_id").alias("policy_count"),
        avg("premium_amount").alias("avg_premium_per_policy")
    ).withColumn("product_profit", col("product_revenue") - col("product_claims")).withColumn("roi_percentage", 
        when(col("product_claims") > 0, (col("product_profit") / col("product_claims")) * 100).otherwise(0)
    ).orderBy(desc("product_profit"))
    customer_value = combined_financial.groupBy("customer_id").agg(
        sum("premium_amount").alias("customer_lifetime_value"),
        sum("claim_payout").alias("customer_total_claims"),
        count("policy_id").alias("policies_held"),
        avg("premium_amount").alias("avg_policy_value")
    ).withColumn("customer_profitability", col("customer_lifetime_value") - col("customer_total_claims")).filter(col("customer_profitability") > 0).orderBy(desc("customer_profitability"))
    cost_analysis = combined_financial.withColumn("acquisition_cost", col("marketing_cost") + col("underwriting_cost")).withColumn("operational_cost", col("admin_cost") + col("claim_processing_cost")).groupBy("sales_channel").agg(
        avg("acquisition_cost").alias("avg_acquisition_cost"),
        avg("operational_cost").alias("avg_operational_cost"),
        sum("premium_amount").alias("channel_revenue"),
        count("policy_id").alias("policies_sold")
    ).withColumn("cost_per_policy", col("avg_acquisition_cost") + col("avg_operational_cost")).withColumn("channel_efficiency", 
        when(col("cost_per_policy") > 0, col("channel_revenue") / col("policies_sold") / col("cost_per_policy")).otherwise(0)
    )
    result_monthly = monthly_revenue.toPandas()
    result_product = product_profitability.toPandas()
    result_customer = customer_value.toPandas()
    result_cost = cost_analysis.toPandas()
    spark.stop()
    return {
        "monthly_revenue": result_monthly.to_dict('records'),
        "product_profitability": result_product.to_dict('records'),
        "customer_value": result_customer.to_dict('records'),
        "cost_analysis": result_cost.to_dict('records')
    }

基于大数据的汽车保险数据可视化分析系统文档展示

文档.png

💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目