🍊作者:计算机毕设匠心工作室
🍊简介:毕业后就一直专业从事计算机软件程序开发,至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。
擅长:按照需求定制化开发项目、 源码、对代码进行完整讲解、文档撰写、ppt制作。
🍊心愿:点赞 👍 收藏 ⭐评论 📝
👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
🍅 ↓↓文末获取源码联系↓↓🍅
基于大数据的中国水污染监测数据可视化分析系统-功能介绍
基于大数据的中国水污染监测数据可视化分析系统是一套集数据采集、存储、分析与可视化展示于一体的综合性环境监测平台。系统采用Hadoop分布式存储架构结合Spark大数据处理框架,能够高效处理海量的水质监测数据,通过Python语言进行数据分析算法开发,后端基于Django框架构建RESTful API服务,前端运用Vue.js配合ElementUI和Echarts实现交互式数据可视化界面。系统主要功能涵盖全国各省份水质时空分布特征分析、核心污染指标深度剖析、污染成因算法挖掘等模块,能够实现对COD、氨氮、总磷、总氮等关键污染物指标的多维度统计分析,支持生成省份水质排名、城市污染红黑榜、月度季度变化趋势图表、地理热力图等多种可视化展示形式,为水环境管理部门提供科学的数据支撑和决策参考。
基于大数据的中国水污染监测数据可视化分析系统-选题背景意义
选题背景 随着我国工业化进程的加快和城市化水平的不断提升,水环境污染问题日益凸显,各类工业废水、生活污水以及农业面源污染对水体造成了不同程度的影响。水质监测作为环境保护的重要组成部分,产生了大量的监测数据,这些数据具有来源多样、格式复杂、数量庞大的特点,传统的人工统计和简单的数据库查询方式已经难以满足深度分析的需求。目前水环境监测领域面临着数据利用率不高、分析手段单一、可视化程度不够等问题,缺乏有效的技术手段将海量监测数据转化为有价值的环境管理信息。大数据技术的快速发展为解决这些问题提供了新的思路,通过分布式计算和机器学习算法,可以实现对水质数据的深度挖掘和智能分析,帮助相关部门更好地了解水污染的时空分布规律和变化趋势。 选题意义 本系统的开发具有一定的实际应用价值和技术探索意义。从应用角度来看,系统能够帮助环境监测部门更加直观地了解各地区水质状况,通过数据可视化的方式展现污染分布特征和变化趋势,为制定针对性的治理措施提供参考依据。系统支持的多维度分析功能可以协助工作人员识别重点污染区域和主要污染因子,在一定程度上提升水环境管理的科学性和有效性。从技术角度来说,本项目将大数据处理技术应用于环境监测领域,探索了Hadoop和Spark在水质数据分析中的应用方式,为类似的环境数据处理项目提供了技术参考。作为一个毕业设计项目,系统的开发过程涉及了前后端开发、数据库设计、大数据处理、数据可视化等多个技术领域,有助于提升综合性的软件开发能力。虽然系统功能相对简单,但在水环境保护日益受到重视的背景下,这类数据分析工具的开发仍具有一定的现实意义。
基于大数据的中国水污染监测数据可视化分析系统-技术选型
大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL
基于大数据的中国水污染监测数据可视化分析系统-视频展示
基于大数据的中国水污染监测数据可视化分析系统-图片展示
基于大数据的中国水污染监测数据可视化分析系统-代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, stddev, corr
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler
from django.http import JsonResponse
import pandas as pd
import numpy as np
def provincial_water_quality_analysis(request):
spark = SparkSession.builder.appName("ProvinceWaterQualityAnalysis").getOrCreate()
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/water_monitor").option("dbtable", "water_quality_data").option("user", "root").option("password", "password").load()
province_quality = df.groupBy("Province").agg(avg("Water_Quality_Index").alias("avg_quality_index"), count("*").alias("monitor_count"), stddev("Water_Quality_Index").alias("quality_stddev"))
province_ranking = province_quality.orderBy(col("avg_quality_index").desc())
result_data = []
for row in province_ranking.collect():
province_info = {"province": row["Province"], "avg_quality": round(row["avg_quality_index"], 2), "monitor_points": row["monitor_count"], "stability": round(row["quality_stddev"], 2) if row["quality_stddev"] else 0}
quality_level = "优" if province_info["avg_quality"] >= 80 else "良" if province_info["avg_quality"] >= 60 else "差"
province_info["quality_level"] = quality_level
result_data.append(province_info)
pollution_distribution = df.groupBy("Province", "Pollution_Level").count()
pollution_stats = {}
for row in pollution_distribution.collect():
province = row["Province"]
if province not in pollution_stats:
pollution_stats[province] = {}
pollution_stats[province][row["Pollution_Level"]] = row["count"]
for province_data in result_data:
province_name = province_data["province"]
province_data["pollution_distribution"] = pollution_stats.get(province_name, {})
spark.stop()
return JsonResponse({"status": "success", "data": result_data, "total_provinces": len(result_data)})
def pollutant_correlation_analysis(request):
spark = SparkSession.builder.appName("PollutantCorrelationAnalysis").getOrCreate()
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/water_monitor").option("dbtable", "water_quality_data").option("user", "root").option("password", "password").load()
pollutant_columns = ["COD_mg_L", "Ammonia_N_mg_L", "Total_Phosphorus_mg_L", "Total_Nitrogen_mg_L", "Heavy_Metals_Pb_ug_L", "Heavy_Metals_Cd_ug_L", "Heavy_Metals_Hg_ug_L"]
correlation_results = []
for pollutant in pollutant_columns:
correlation_coeff = df.select(corr(pollutant, "Water_Quality_Index").alias("correlation")).collect()[0]["correlation"]
if correlation_coeff is not None:
pollutant_avg = df.select(avg(pollutant).alias("avg_value")).collect()[0]["avg_value"]
pollutant_max = df.select(col(pollutant)).agg({"COD_mg_L": "max"}).collect()[0][f"max({pollutant})"] if pollutant == "COD_mg_L" else df.agg({pollutant: "max"}).collect()[0][f"max({pollutant})"]
correlation_results.append({"pollutant": pollutant, "correlation": round(correlation_coeff, 4), "avg_concentration": round(pollutant_avg, 3) if pollutant_avg else 0, "max_concentration": round(pollutant_max, 3) if pollutant_max else 0})
correlation_results.sort(key=lambda x: abs(x["correlation"]), reverse=True)
province_pollutant_data = df.groupBy("Province").agg(*[avg(col).alias(f"avg_{col}") for col in pollutant_columns])
province_analysis = []
for row in province_pollutant_data.collect():
province_data = {"province": row["Province"]}
main_pollutants = []
for pollutant in pollutant_columns:
avg_value = row[f"avg_{pollutant}"]
if avg_value and avg_value > 0:
main_pollutants.append({"name": pollutant, "concentration": round(avg_value, 3)})
main_pollutants.sort(key=lambda x: x["concentration"], reverse=True)
province_data["main_pollutants"] = main_pollutants[:3]
province_analysis.append(province_data)
spark.stop()
return JsonResponse({"status": "success", "correlation_analysis": correlation_results, "province_pollutant_ranking": province_analysis})
def city_pollution_clustering_analysis(request):
spark = SparkSession.builder.appName("CityPollutionClustering").getOrCreate()
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/water_monitor").option("dbtable", "water_quality_data").option("user", "root").option("password", "password").load()
city_features = df.groupBy("City").agg(avg("COD_mg_L").alias("avg_cod"), avg("Ammonia_N_mg_L").alias("avg_ammonia"), avg("Total_Phosphorus_mg_L").alias("avg_phosphorus"), avg("Total_Nitrogen_mg_L").alias("avg_nitrogen"), avg("Water_Quality_Index").alias("avg_quality"))
city_features_clean = city_features.na.fill(0)
feature_columns = ["avg_cod", "avg_ammonia", "avg_phosphorus", "avg_nitrogen", "avg_quality"]
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
city_vectors = assembler.transform(city_features_clean)
kmeans = KMeans(k=4, seed=42, featuresCol="features", predictionCol="cluster")
model = kmeans.fit(city_vectors)
predictions = model.transform(city_vectors)
clustering_results = []
for row in predictions.collect():
city_data = {"city": row["City"], "cluster": int(row["cluster"]), "avg_cod": round(row["avg_cod"], 2), "avg_ammonia": round(row["avg_ammonia"], 2), "avg_phosphorus": round(row["avg_phosphorus"], 2), "avg_nitrogen": round(row["avg_nitrogen"], 2), "avg_quality_index": round(row["avg_quality"], 2)}
if city_data["cluster"] == 0:
city_data["pollution_type"] = "轻度综合污染"
elif city_data["cluster"] == 1:
city_data["pollution_type"] = "重度工业污染"
elif city_data["cluster"] == 2:
city_data["pollution_type"] = "农业面源污染"
else:
city_data["pollution_type"] = "复合型污染"
clustering_results.append(city_data)
cluster_summary = {}
for cluster_id in range(4):
cluster_cities = [city for city in clustering_results if city["cluster"] == cluster_id]
cluster_summary[cluster_id] = {"city_count": len(cluster_cities), "cities": [city["city"] for city in cluster_cities], "avg_quality": round(sum([city["avg_quality_index"] for city in cluster_cities]) / len(cluster_cities), 2) if cluster_cities else 0}
spark.stop()
return JsonResponse({"status": "success", "clustering_results": clustering_results, "cluster_summary": cluster_summary, "total_cities": len(clustering_results)})
基于大数据的中国水污染监测数据可视化分析系统-结语
👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
🍅 主页获取源码联系🍅