基于微信小程序的考研资源共享平台的设计与实现 | 【毕设微信小程序开发】选题推荐 毕设小程序项目 课程设计+文档指导+ppt+部署 java Python

36 阅读4分钟

💖💖作者:计算机毕业设计江挽 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目

基于微信小程序的考研资源共享平台介绍

基于微信小程序的考研资源共享平台是一个集资源共享、学习交流、备考指导于一体的综合性教育服务系统。该平台采用SpringBoot框架构建后端服务,结合uni-app开发的微信小程序前端,为考研学子提供便捷的移动端学习体验。系统实现了用户分类管理,支持学生和教师两种角色,学生可以浏览和下载考研资料、参与学习讨论、制定个人学习计划、提交作业并查看成绩,教师则可以发布课程信息、管理选课情况、布置和批改作业。平台设置了丰富的功能模块,包括资料分类展示、考研资源库、备考专区、学习交流论坛等,通过MySQL数据库存储用户数据和资源信息。系统还提供了报名活动功能,让用户参与各类考研相关活动,并建立了举报机制维护平台秩序。整个平台基于C/S和B/S混合架构,确保了系统的稳定性和扩展性,为广大考研群体搭建了一个高效、便民的学习资源共享环境。

基于微信小程序的考研资源共享平台演示视频

演示视频

基于微信小程序的考研资源共享平台演示图片

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

基于微信小程序的考研资源共享平台代码展示

import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class ExamResourceService {
    
    private SparkSession spark = SparkSession.builder()
            .appName("ExamResourceAnalysis")
            .master("local[*]")
            .getOrCreate();
    
    @Autowired
    private ResourceMapper resourceMapper;
    
    public List<ExamResource> getResourcesByCategory(String category) {
        List<ExamResource> resources = resourceMapper.findByCategory(category);
        Dataset<Row> resourceDF = spark.createDataFrame(resources, ExamResource.class);
        resourceDF.createOrReplaceTempView("resources");
        Dataset<Row> filteredData = spark.sql("SELECT * FROM resources WHERE downloadCount > 10 ORDER BY uploadTime DESC");
        List<Row> results = filteredData.collectAsList();
        List<ExamResource> filteredResources = new ArrayList<>();
        for (Row row : results) {
            ExamResource resource = new ExamResource();
            resource.setId(row.getAs("id"));
            resource.setTitle(row.getAs("title"));
            resource.setCategory(row.getAs("category"));
            resource.setDownloadCount(row.getAs("downloadCount"));
            resource.setUploadTime(row.getAs("uploadTime"));
            filteredResources.add(resource);
        }
        return filteredResources;
    }
    
    public Map<String, Object> getResourceStatistics() {
        List<ExamResource> allResources = resourceMapper.findAll();
        Dataset<Row> resourceDF = spark.createDataFrame(allResources, ExamResource.class);
        resourceDF.createOrReplaceTempView("all_resources");
        Dataset<Row> statsData = spark.sql("SELECT category, COUNT(*) as count, AVG(downloadCount) as avgDownloads FROM all_resources GROUP BY category");
        List<Row> statsList = statsData.collectAsList();
        Map<String, Object> statistics = new HashMap<>();
        for (Row row : statsList) {
            Map<String, Object> categoryStats = new HashMap<>();
            categoryStats.put("count", row.getAs("count"));
            categoryStats.put("avgDownloads", row.getAs("avgDownloads"));
            statistics.put(row.getAs("category").toString(), categoryStats);
        }
        return statistics;
    }
    
    public boolean downloadResource(Long resourceId, Long userId) {
        ExamResource resource = resourceMapper.findById(resourceId);
        if (resource == null) {
            return false;
        }
        DownloadRecord record = new DownloadRecord();
        record.setResourceId(resourceId);
        record.setUserId(userId);
        record.setDownloadTime(new Date());
        downloadRecordMapper.insert(record);
        resource.setDownloadCount(resource.getDownloadCount() + 1);
        resourceMapper.update(resource);
        Dataset<Row> downloadDF = spark.createDataFrame(Arrays.asList(record), DownloadRecord.class);
        downloadDF.createOrReplaceTempView("downloads");
        Dataset<Row> userDownloads = spark.sql("SELECT COUNT(*) as totalDownloads FROM downloads WHERE userId = " + userId);
        Long totalCount = userDownloads.first().getAs("totalDownloads");
        if (totalCount > 50) {
            UserLevel level = userLevelMapper.findByUserId(userId);
            level.setLevel("VIP");
            userLevelMapper.update(level);
        }
        return true;
    }
    
    public List<ForumPost> getForumPostsByTopic(String topic) {
        List<ForumPost> posts = forumMapper.findByTopic(topic);
        Dataset<Row> postDF = spark.createDataFrame(posts, ForumPost.class);
        postDF.createOrReplaceTempView("forum_posts");
        Dataset<Row> hotPosts = spark.sql("SELECT * FROM forum_posts WHERE replyCount > 5 AND likeCount > 10 ORDER BY createTime DESC LIMIT 20");
        List<Row> hotPostRows = hotPosts.collectAsList();
        List<ForumPost> result = new ArrayList<>();
        for (Row row : hotPostRows) {
            ForumPost post = new ForumPost();
            post.setId(row.getAs("id"));
            post.setTitle(row.getAs("title"));
            post.setContent(row.getAs("content"));
            post.setUserId(row.getAs("userId"));
            post.setTopic(row.getAs("topic"));
            post.setReplyCount(row.getAs("replyCount"));
            post.setLikeCount(row.getAs("likeCount"));
            post.setCreateTime(row.getAs("createTime"));
            result.add(post);
        }
        return result;
    }
    
    public boolean createForumPost(ForumPost post) {
        post.setCreateTime(new Date());
        post.setReplyCount(0);
        post.setLikeCount(0);
        forumMapper.insert(post);
        List<ForumPost> userPosts = forumMapper.findByUserId(post.getUserId());
        Dataset<Row> userPostDF = spark.createDataFrame(userPosts, ForumPost.class);
        userPostDF.createOrReplaceTempView("user_posts");
        Dataset<Row> userStats = spark.sql("SELECT COUNT(*) as postCount, AVG(likeCount) as avgLikes FROM user_posts WHERE userId = " + post.getUserId());
        Row statsRow = userStats.first();
        Long postCount = statsRow.getAs("postCount");
        Double avgLikes = statsRow.getAs("avgLikes");
        UserContribution contribution = userContributionMapper.findByUserId(post.getUserId());
        contribution.setPostCount(postCount.intValue());
        contribution.setAvgLikes(avgLikes);
        userContributionMapper.update(contribution);
        return true;
    }
    
    public List<StudyPlan> getPersonalStudyPlans(Long userId) {
        List<StudyPlan> plans = studyPlanMapper.findByUserId(userId);
        Dataset<Row> planDF = spark.createDataFrame(plans, StudyPlan.class);
        planDF.createOrReplaceTempView("study_plans");
        Dataset<Row> planAnalysis = spark.sql("SELECT *, DATEDIFF(endDate, startDate) as planDays, completedTasks * 100.0 / totalTasks as completionRate FROM study_plans WHERE userId = " + userId);
        List<Row> analysisRows = planAnalysis.collectAsList();
        List<StudyPlan> enhancedPlans = new ArrayList<>();
        for (Row row : analysisRows) {
            StudyPlan plan = new StudyPlan();
            plan.setId(row.getAs("id"));
            plan.setUserId(row.getAs("userId"));
            plan.setTitle(row.getAs("title"));
            plan.setStartDate(row.getAs("startDate"));
            plan.setEndDate(row.getAs("endDate"));
            plan.setCompletedTasks(row.getAs("completedTasks"));
            plan.setTotalTasks(row.getAs("totalTasks"));
            plan.setPlanDays(row.getAs("planDays"));
            plan.setCompletionRate(row.getAs("completionRate"));
            enhancedPlans.add(plan);
        }
        return enhancedPlans;
    }
    
    public boolean updateStudyPlan(StudyPlan plan) {
        studyPlanMapper.update(plan);
        List<StudyPlan> allUserPlans = studyPlanMapper.findByUserId(plan.getUserId());
        Dataset<Row> allPlansDF = spark.createDataFrame(allUserPlans, StudyPlan.class);
        allPlansDF.createOrReplaceTempView("all_user_plans");
        Dataset<Row> planStats = spark.sql("SELECT AVG(completedTasks * 100.0 / totalTasks) as avgCompletionRate, COUNT(*) as totalPlans FROM all_user_plans WHERE userId = " + plan.getUserId());
        Row statsRow = planStats.first();
        Double avgCompletion = statsRow.getAs("avgCompletionRate");
        Long totalPlans = statsRow.getAs("totalPlans");
        UserProgress progress = userProgressMapper.findByUserId(plan.getUserId());
        progress.setAvgCompletionRate(avgCompletion);
        progress.setTotalPlans(totalPlans.intValue());
        userProgressMapper.update(progress);
        if (avgCompletion > 80.0) {
            Achievement achievement = new Achievement();
            achievement.setUserId(plan.getUserId());
            achievement.setType("STUDY_MASTER");
            achievement.setEarnedDate(new Date());
            achievementMapper.insert(achievement);
        }
        return true;
    }
}

基于微信小程序的考研资源共享平台文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计江挽 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目