【机器学习】嘿马机器学习(科学计算库)第10篇:Pandas,5.8 高级处理-数据离散化【附代码文档】

37 阅读1分钟

🏆🏆🏆教程全知识点简介:1.机器学习常用科学计算库包括基础定位、目标。2. 人工智能概述涵盖人工智能应用场景、人工智能小案例、人工智能发展必备三要素、人工智能机器学习和深度学习。3. 机器学习概述包括机器学习工作流程、什么是机器学习、模型评估(回归模型评估、拟合)、Azure机器学习模型搭建、完整机器学习项目流程。4. 机器学习基础环境安装与使用包括Jupyter Notebook使用(一级标题、Jupyter Notebook中自动补全代码等相关功能拓展)。5. Matplotlib可视化涵盖Matplotlib HelloWorld(什么是Matplotlib、实现简单Matplotlib画图折线图、画出温度变化图、准备数据、创建画布、绘制折线图、显示图像、构造x轴刻度标签、修改坐标刻度显示、设置中文字体、设置正常显示符号、保存图片)、添加坐标轴刻度、添加网格显示、添加描述信息、图像保存、设置图形风格、常见图形绘制(常见图形种类意义、散点图绘制)。6. Numpy包括Numpy优势、N维数组ndarray(ndarray属性)、基本操作(生成数组方法、生成0和1数组、从现有数组生成、创建符合正态分布股某票涨跌幅数据)、数组间运算(数组与数的运算)。7. Pandas数据结构包括Series、DataFrame。8. 文件读取与存储涵盖CSV(read_csv)、HDF(read_hdf与to_hdf)、JSON(read_josn)。9. 高级处理数据离散化包括为什么要离散化、什么是数据离散化、股某票涨跌幅离散化(读取股某票数据、将股某票涨跌幅数据进行分组、股某票涨跌幅分组数据变成one_hot编码)、案例实现。


📚📚仓库code.zip 👉直接-->:   gitlab.com/yinuo_112/A…    🍅🍅

✨ 本教程项目亮点

🧠 知识体系完整:覆盖从基础原理、核心方法到高阶应用的全流程内容
💻 全技术链覆盖:完整前后端技术栈,涵盖开发必备技能
🚀 从零到实战:适合 0 基础入门到提升,循序渐进掌握核心能力
📚 丰富文档与代码示例:涵盖多种场景,可运行、可复用
🛠 工作与学习双参考:不仅适合系统化学习,更可作为日常开发中的查阅手册
🧩 模块化知识结构:按知识点分章节,便于快速定位和复习
📈 长期可用的技术积累:不止一次学习,而是能伴随工作与项目长期参考


🎯🎯🎯全教程总章节


🚀🚀🚀本篇主要内容

Pandas

学习目标

  • 了解Numpy与Pandas的不同
  • 说明Pandas的Series与Dataframe两种结构的区别
  • 了解Pandas的MultiIndex与panel结构
  • 应用Pandas实现基本数据操作
  • 应用Pandas实现数据的合并
  • 应用crosstab和pivot_table实现交叉表与透视表
  • 应用groupby和聚合函数实现数据的分组与聚合
  • 了解Pandas的plot画图功能
  • 应用Pandas实现数据的读取和存储

5.8 高级处理-数据离散化

学习目标

  • 目标

    • 应用cut、qcut实现数据的区间分组
    • 应用get_dummies实现数据的one-hot编码

1 为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。

2 什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。

离散化有很多种方法,这使用一种最简单的方式去操作

  • 原始人的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:150165, 165180,180~195

这样 将数据分到了三个区间段,我可以对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵

3 股某票的涨跌幅离散化

对股某票每日的"p_change"进行离散化

3.1 读取股某票的数据

先读取股某票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

3.2 将股某票涨跌幅数据进行分组

使用的工具:

  • pd.qcut(data, q):

    • 对数据进行分组将数据分组,一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数

  
  
# 自行分组
  
  
qcut = pd.qcut(p_change, 10)
  
  
# 计算分到每个组数据个数
  
  
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)
  
  
# 自己指定分组区间
  
  
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

3.3 股某票涨跌幅分组数据变成one-hot编码

  • 什么是one-hot编码

把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为独热编码。

把下图中左边的表格转化为使用右边形式进行表示:

  • pandas.get_dummies(data, prefix=None)

    • data:array-like, Series, or DataFrame

    • prefix:分组名字

  
  
# 得出one-hot编码矩阵
  
  
dummies = pd.get_dummies(p_counts, prefix="rise")

4 小结

  • 数据离散化【知道】

    • 可以用来减少给定连续属性值的个数
    • 在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数值代表落在每个子区间中的属性值。
  • qcut、cut实现数据分组【知道】

    • qcut:大致分为相同的几组
    • cut:自定义分组区间
  • get_dummies实现哑变量矩阵【知道】

5.9 高级处理-合并

学习目标

  • 目标

    • 应用pd.concat实现数据的合并
    • 应用pd.merge实现数据的合并

如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析

1 pd.concat实现数据合并

  • pd.concat([data1, data2], axis=1)

    • 按照行或列进行合并,axis=0为列索引,axis=1为行索引

比如 将刚才处理好的one-hot编码与原数据合并

  
  
# 按照行索引进行
  
  
pd.concat([data, dummies], axis=1)

2 pd.merge

  • pd.merge(left, right, how='inner', on=None)

    • 可以指定按照两组数据的共同键值对合并或者左右各自
    • left: DataFrame
    • right: 另一个DataFrame
    • on: 指定的共同键
    • how:按照什么方式连接
Merge methodSQL Join NameDescription
leftLEFT OUTER JOINUse keys from left frame only
rightRIGHT OUTER JOINUse keys from right frame only
outerFULL OUTER JOINUse union of keys from both frames
innerINNER JOINUse intersection of keys from both frames

2.1 pd.merge合并

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                        'key2': ['K0', 'K0', 'K0', 'K0'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})

  
  
# 默认内连接
  
  
result = pd.merge(left, right, on=['key1', 'key2'])

![](p3-juejin.byteimg.com/tos-cn-i-k3…