空间复杂度
算法相关空间
算法在运行过程中使用的内存空间主要包括以下几种。
- 输入空间:用于存储算法的输入数据。
- 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
- 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
- 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
- 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。
- 输出空间:用于存储算法的输出数据。
一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。
推算方法
最差空间复杂度中的“最差”有两层含义。
- 以最差输入数据为准:当 时,空间复杂度为 ;但当 时,初始化的数组
nums占用 空间,因此最差空间复杂度为 。 - 以算法运行中的峰值内存为准:例如,程序在执行最后一行之前,占用 空间;当初始化数组
nums时,程序占用 空间,因此最差空间复杂度为 。
function algorithm(n) {
const a = 0; // O(1)
const b = new Array(10000); // O(1)
if (n > 10) {
const nums = new Array(n); // O(n)
}
}
在递归函数中,需要注意统计栈帧空间。
function constFunc() {
// 执行某些操作
return 0;
}
/* 循环的空间复杂度为 O(1) */
function loop(n) {
for (let i = 0; i < n; i++) {
constFunc();
}
}
/* 递归的空间复杂度为 O(n) */
function recur(n) {
if (n === 1) return;
return recur(n - 1);
}
函数 loop() 和 recur() 的时间复杂度都为 ,但空间复杂度不同。
- 函数
loop()在循环中调用了 次function(),每轮中的function()都返回并释放了栈帧空间,因此空间复杂度仍为 。 - 递归函数
recur()在运行过程中会同时存在 个未返回的recur(),从而占用 的栈帧空间。
常见类型
常数阶
常数阶常见于数量与输入数据大小 无关的常量、变量、对象。
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,因此不会累积占用空间,空间复杂度仍为
线性阶
线性阶常见于元素数量与 成正比的数组、链表、栈、队列等
平方阶
平方阶常见于矩阵和图,元素数量与 成平方关系
/* 平方阶(递归实现) */
function quadraticRecur(n) {
if (n <= 0) return 0;
const nums = new Array(n);
console.log(`递归 n = ${n} 中的 nums 长度 = ${nums.length}`);
return quadraticRecur(n - 1);
}
指数阶
指数阶常见于二叉树。
/* 指数阶(建立满二叉树) */
function buildTree(n) {
if (n === 0) return null;
const root = new TreeNode(0);
root.left = buildTree(n - 1);
root.right = buildTree(n - 1);
return root;
}
对数阶
对数阶常见于分治算法。例如归并排序,输入长度为 的数组,每轮递归将数组从中点处划分为两半,形成高度为 的递归树,使用 栈帧空间。
再例如将数字转化为字符串
权衡时间与空间
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常非常困难。
降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。
空间复杂度分析
时间复杂度的全称是 渐进时间复杂度,表示 算法的执行时间与数据规模之间的增长关系 。
类比一下,空间复杂度全称就是 渐进空间复杂度(asymptotic space complexity),表示 算法的存储空间与数据规模之间的增长关系 。
定义:算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式记作:S(n) = O(f(n)) ,其中,n 为问题的规模,f(n) 为语句关于 n 所占存储空间的函数。
function print(n) {
const newArr = []; // 第 2 行
newArr.length = n; // 第 3 行
for (let i = 0; i <n; ++i) {
newArr[i] = i * i;
}
for (let j = n-1; j >= 0; --j) {
console.log(newArr[i])
}
}
跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 newArr ,是个空数组。第 3 行把 newArr 的长度修改为 n 的长度的数组,每项的值为 undefined ,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
我们常见的空间复杂度就是 O(1)、O(n)、O(n(2)),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。