💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目
@TOC
基于微信小程序的心理咨询预约系统介绍
基于微信小程序的心理咨询预约系统是一款专门为心理健康服务打造的综合性管理平台,采用Java+SpringBoot作为后端核心技术架构,结合uni-app开发的微信小程序前端,通过MySQL数据库实现数据的高效存储与管理。该系统集成了完整的心理健康服务生态链,包括用户注册管理、专业心理咨询师信息展示、多样化的心理知识科普内容分类与展示、在线心理咨询预约功能、实时咨询回复互动、用户咨询评价反馈机制、专业心理测试结果分析、求助信息发布与响应、个性化建议指导、心情打卡记录功能等核心模块。系统还配备了智能化的测试判定机制,通过完善的试题库管理和试题管理功能,结合科学的心理测试管理体系,为用户提供专业的心理健康评估服务。平台设有独立的心理资讯分类管理,定期发布最新的心理健康资讯内容,并通过轮播图管理功能进行重要信息的可视化展示。系统还集成了智能AI辅助功能,能够为用户提供初步的心理健康指导建议,同时支持完整的试卷管理功能,确保心理测试的科学性和准确性。整个系统采用C/S和B/S混合架构,确保了多端访问的便利性和数据处理的高效性,为现代心理健康服务提供了完整的数字化解决方案。
基于微信小程序的心理咨询预约系统演示视频
基于微信小程序的心理咨询预约系统演示图片
基于微信小程序的心理咨询预约系统代码展示
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.springframework.web.bind.annotation.*;
import org.springframework.beans.factory.annotation.Autowired;
@RestController
@RequestMapping("/api")
public class PsychologyConsultationController {
@Autowired
private SparkSession sparkSession = SparkSession.builder().appName("PsychologyConsultationSystem").master("local[*]").getOrCreate();
@PostMapping("/appointment/create")
public ResponseEntity<String> createAppointment(@RequestBody AppointmentRequest request) {
Appointment appointment = new Appointment();
appointment.setUserId(request.getUserId());
appointment.setCounselorId(request.getCounselorId());
appointment.setAppointmentTime(request.getAppointmentTime());
appointment.setConsultationType(request.getConsultationType());
appointment.setStatus("待确认");
appointment.setCreateTime(new Date());
appointment.setRemark(request.getRemark());
appointmentMapper.insert(appointment);
Counselor counselor = counselorMapper.selectById(request.getCounselorId());
counselor.setAvailableSlots(counselor.getAvailableSlots() - 1);
counselorMapper.updateById(counselor);
NotificationService.sendAppointmentNotification(counselor.getPhone(), "您有新的咨询预约");
Dataset<Row> appointmentData = sparkSession.read().option("header", "true").csv("hdfs://localhost:9000/appointments.csv");
Dataset<Row> analysisResult = appointmentData.groupBy("counselor_id").count();
analysisResult.write().mode("overwrite").csv("hdfs://localhost:9000/appointment_analysis");
return ResponseEntity.ok("预约创建成功");
}
@PostMapping("/test/submit")
public ResponseEntity<TestResult> submitPsychologyTest(@RequestBody TestSubmission submission) {
int totalScore = 0;
List<TestAnswer> answers = submission.getAnswers();
for (TestAnswer answer : answers) {
Question question = questionMapper.selectById(answer.getQuestionId());
totalScore += question.getScoreMap().get(answer.getSelectedOption());
}
String resultLevel = calculateResultLevel(totalScore);
String suggestion = generateSuggestion(resultLevel, submission.getTestType());
TestResult result = new TestResult();
result.setUserId(submission.getUserId());
result.setTestId(submission.getTestId());
result.setTotalScore(totalScore);
result.setResultLevel(resultLevel);
result.setSuggestion(suggestion);
result.setTestTime(new Date());
testResultMapper.insert(result);
Dataset<Row> testData = sparkSession.createDataFrame(Arrays.asList(new TestDataRow(submission.getUserId(), totalScore, resultLevel)), TestDataRow.class);
testData.write().mode("append").parquet("hdfs://localhost:9000/test_results.parquet");
Dataset<Row> userTestHistory = sparkSession.read().parquet("hdfs://localhost:9000/test_results.parquet").filter("userId = " + submission.getUserId());
long testCount = userTestHistory.count();
if (testCount >= 3) {
Dataset<Row> trendAnalysis = userTestHistory.orderBy("testTime").select("totalScore", "testTime");
trendAnalysis.write().mode("overwrite").json("hdfs://localhost:9000/user_trend/" + submission.getUserId());
}
return ResponseEntity.ok(result);
}
@PostMapping("/consultation/reply")
public ResponseEntity<String> replyConsultation(@RequestBody ConsultationReply reply) {
Consultation consultation = consultationMapper.selectById(reply.getConsultationId());
consultation.setCounselorReply(reply.getReplyContent());
consultation.setReplyTime(new Date());
consultation.setStatus("已回复");
consultationMapper.updateById(consultation);
ConsultationRecord record = new ConsultationRecord();
record.setConsultationId(reply.getConsultationId());
record.setCounselorId(reply.getCounselorId());
record.setReplyContent(reply.getReplyContent());
record.setReplyTime(new Date());
record.setReadStatus(0);
consultationRecordMapper.insert(record);
User user = userMapper.selectById(consultation.getUserId());
MessageService.sendReplyNotification(user.getWechatOpenId(), "您的咨询已收到回复");
Dataset<Row> replyData = sparkSession.createDataFrame(Arrays.asList(new ReplyDataRow(reply.getCounselorId(), reply.getReplyContent().length(), new Date())), ReplyDataRow.class);
replyData.write().mode("append").parquet("hdfs://localhost:9000/reply_analysis.parquet");
Dataset<Row> counselorReplyStats = sparkSession.read().parquet("hdfs://localhost:9000/reply_analysis.parquet").groupBy("counselorId").agg(avg("replyLength").alias("avgReplyLength"), count("*").alias("totalReplies"));
counselorReplyStats.write().mode("overwrite").json("hdfs://localhost:9000/counselor_performance");
Counselor counselor = counselorMapper.selectById(reply.getCounselorId());
counselor.setReplyCount(counselor.getReplyCount() + 1);
counselor.setLastReplyTime(new Date());
counselorMapper.updateById(counselor);
return ResponseEntity.ok("回复发送成功");
}
}
基于微信小程序的心理咨询预约系统文档展示
💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目