Kafka + Spring Boot 终极整合指南

298 阅读3分钟

Kafka + Spring Boot 终极整合指南

基于 Spring Boot 3.2 + Kafka 3.7生产级 实践 含 Docker 快速启动、自动配置源码、高级特性、压测调优 全流程


目录

  1. 导语
  2. 环境准备
  3. Docker 一键启动 Kafka
  4. Spring Boot 项目搭建
  5. 自动配置源码走读
  6. 生产者(Producer)高级特性
  7. 消费者(Consumer)高级特性
  8. 事务与幂等性
  9. Kafka Streams 微服务
  10. 压测与调优
  11. 常见问题 FAQ
  12. 总结

导语

“Spring Boot + Kafka” = 高吞吐、低延迟、水平扩展事件驱动 架构基石。 本文从 Docker 启动生产调优 一条龙的 可复制 方案。


环境准备

组件版本
JDK17+
Spring Boot3.2.x
Kafka3.7.x
Maven3.9+
Docker24+

Docker 一键启动 Kafka

# 1. 启动 ZooKeeper(Kafka 3.7 仍支持 ZK 模式)
docker run -d --name zookeeper -p 2181:2181 zookeeper:3.8

# 2. 启动 Kafka
docker run -d --name kafka \
  -p 9092:9092 \
  -e KAFKA_BROKER_ID=1 \
  -e KAFKA_ZOOKEEPER_CONNECT=host.docker.internal:2181 \
  -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://host.docker.internal:9092 \
  -e KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR=1 \
  confluentinc/cp-kafka:7.6.0

验证:docker exec kafka kafka-topics.sh --list --bootstrap-server localhost:9092


Spring Boot 项目搭建

1. 引入依赖

<dependencies>
    <!-- Web 测试用 -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!-- Kafka -->
    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
    </dependency>
    <!-- JSON 序列化 -->
    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
        <exclusions>
            <exclusion>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>3.7.0</version>
    </dependency>
</dependencies>

2. 配置(application.yml

spring:
  kafka:
    bootstrap-servers: host.docker.internal:9092
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.springframework.kafka.support.serializer.JsonSerializer
      acks: all
      retries: 3
      batch-size: 16384
      linger-ms: 5
    consumer:
      group-id: order-group
      auto-offset-reset: earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.springframework.kafka.support.serializer.JsonDeserializer
      properties:
        spring.json.trusted.packages: "*"

自动配置源码走读

1. 入口:KafkaAutoConfiguration

@AutoConfiguration
@ConditionalOnClass(KafkaTemplate.class)
@EnableConfigurationProperties(KafkaProperties.class)
public class KafkaAutoConfiguration {

    @Bean
    @ConditionalOnMissingBean
    public ProducerFactory<?, ?> producerFactory(KafkaProperties properties) {
        return new DefaultKafkaProducerFactory<>(properties.buildProducerProperties());
    }

    @Bean
    @ConditionalOnMissingBean
    public KafkaTemplate<?, ?> kafkaTemplate(ProducerFactory<?, ?> producerFactory) {
        return new KafkaTemplate<>(producerFactory);
    }
}

2. 消费者工厂

@Bean
@ConditionalOnMissingBean(ConsumerFactory.class)
public ConsumerFactory<?, ?> consumerFactory(KafkaProperties properties) {
    return new DefaultKafkaConsumerFactory<>(properties.buildConsumerProperties());
}

默认 单例配置绑定条件注入 三板斧。


生产者(Producer)高级特性

1. 异步发送 + 回调

@RestController
@RequestMapping("/send")
public class ProducerController {

    @Autowired
    private KafkaTemplate<String, Object> template;

    @GetMapping("/{msg}")
    public CompletableFuture<String> send(@PathVariable String msg) {
        return template.send("demo-topic", msg)
                       .thenApply(result -> "Sent: " + result.getRecordMetadata().offset());
    }
}

2. 事务消息

@Transactional
public void sendInTransaction(List<Order> orders) {
    orders.forEach(o -> template.send("order-topic", o));
}

需开启事务:spring.kafka.producer.transaction-id-prefix=tx-


消费者(Consumer)高级特性

1. 并发消费

@KafkaListener(topics = "demo-topic", groupId = "demo-group", concurrency = "6")
public void listen(String data, Acknowledgment ack) {
    process(data);
    ack.acknowledge(); // 手动提交
}

2. 批量消费

@KafkaListener(topics = "batch-topic")
public void batchListen(List<ConsumerRecord<String, Object>> records) {
    records.forEach(r -> process(r.value()));
}

配置:spring.kafka.listener.type=batch


事务与幂等性

1. 幂等 Producer

spring.kafka.producer.acks=all
spring.kafka.producer.retries=3
spring.kafka.producer.enable-idempotence=true

2. 事务样例

@Transactional
public void createOrder(Order order) {
    template.executeInTransaction(t -> {
        t.send("order-topic", order);
        t.send("stock-topic", order);
        return null;
    });
}

Kafka Streams 微服务

1. 引入依赖

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-streams</artifactId>
</dependency>

2. 拓扑定义

@Bean
public KStream<String, Order> stream(StreamsBuilder builder) {
    KStream<String, Order> source = builder.stream("order-topic");
    source.filter((k, v) -> v.getAmount() > 100)
          .to("big-order-topic");
    return source;
}

压测与调优

1. 压测命令

kafka-producer-perf-test.sh \
  --topic demo-topic --num-records 1000000 --record-size 1024 \
  --throughput -1 --producer-props bootstrap.servers=localhost:9092

2. 调优清单

参数建议值说明
batch.size32 KB提高吞吐
linger.ms5-20 ms延迟换吞吐
compression.typelz4压缩比 + CPU 平衡
fetch.min.bytes1 KB减少空拉取

常见问题 FAQ

问题解决
消息丢失acks=all + 手动提交
重复消费幂等 Producer + 事务
消费延迟增加分区 + 提高并发

总结

Spring Boot + Kafka = 事件驱动高吞吐 架构 从 Docker 启动生产调优,本文提供 全流程可复制 方案。 掌握 自动配置、事务、Streams、压测 四板斧,即可轻松构建 万级 TPS实时系统