毕设展示会现场:基于uni-app的特产平台让全场同学都羡慕不已

53 阅读5分钟

💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目

@TOC

基于微信小程序的家乡特产销售平台介绍

《基于微信小程序的家乡特产销售平台》是一个集电商销售、社交互动与智能管理于一体的综合性毕业设计项目,该系统采用前后端分离架构设计,前端基于uni-app框架开发微信小程序和安卓应用,实现跨平台兼容性,后端支持Java SpringBoot和Python Django两套技术方案,配合MySQL数据库进行数据存储与管理,形成完整的C/S+B/S混合架构体系。系统功能涵盖完整的电商业务流程,包括用户注册登录管理、特产分类与信息展示、促销活动策划、订单全生命周期管理(未支付、已支付、已发货、已完成、已取消、已退款等状态跟踪)、在线支付与充值记录追踪等核心电商模块,同时集成了交流论坛功能,支持论坛分类管理和用户互动交流,提升平台用户粘性。系统还配备了智能AI助手功能,为用户提供个性化服务体验,管理端具备轮播图管理、公告资讯发布、举报记录处理等运营管理工具,用户端提供个人中心、个人信息维护、密码修改等基础服务功能,整个系统通过IDEA或PyCharm进行开发调试,配合微信小程序开发工具实现完整的开发环境搭建,为计算机专业学生提供了一个技术栈丰富、功能完善、实用性强的毕业设计解决方案。

基于微信小程序的家乡特产销售平台演示视频

演示视频

基于微信小程序的家乡特产销售平台演示图片

充值记录管理.png

促销活动.png

登陆界面.png

交流论坛.png

特产分类.png

特产信息.png

用户管理.png

基于微信小程序的家乡特产销售平台代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, sum, count, when, desc, avg
from pyspark.ml.recommendation import ALS
import hashlib
import time
from datetime import datetime

spark = SparkSession.builder.appName("HomeTownSpecialtyPlatform").getOrCreate()

def user_registration_and_management(username, password, email, phone):
   password_hash = hashlib.sha256(password.encode()).hexdigest()
   user_id = int(time.time() * 1000) % 1000000
   registration_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
   user_data = {
       'user_id': user_id,
       'username': username,
       'password_hash': password_hash,
       'email': email,
       'phone': phone,
       'registration_time': registration_time,
       'status': 1,
       'balance': 0.0
   }
   user_behavior_df = spark.createDataFrame([user_data])
   user_behavior_df.write.mode("append").option("path", "/data/users").saveAsTable("users")
   user_stats = spark.sql("SELECT COUNT(*) as total_users FROM users WHERE status = 1")
   user_region_analysis = spark.sql("""
       SELECT SUBSTRING(phone, 1, 3) as region_code, COUNT(*) as user_count
       FROM users 
       GROUP BY SUBSTRING(phone, 1, 3)
       ORDER BY user_count DESC
   """)
   active_users_today = spark.sql("""
       SELECT COUNT(*) as daily_active_users
       FROM users 
       WHERE DATE(registration_time) = CURRENT_DATE()
   """)
   return {'user_id': user_id, 'status': 'success', 'user_stats': user_stats.collect()}

def specialty_product_management_with_analytics(product_name, category_id, price, stock, description, origin_location):
   product_id = int(time.time() * 1000) % 1000000
   create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
   product_data = {
       'product_id': product_id,
       'product_name': product_name,
       'category_id': category_id,
       'price': float(price),
       'stock': int(stock),
       'description': description,
       'origin_location': origin_location,
       'create_time': create_time,
       'sales_count': 0,
       'view_count': 0,
       'rating': 0.0
   }
   product_df = spark.createDataFrame([product_data])
   product_df.write.mode("append").option("path", "/data/products").saveAsTable("products")
   category_analysis = spark.sql("""
       SELECT category_id, COUNT(*) as product_count, AVG(price) as avg_price,
              SUM(sales_count) as total_sales, AVG(rating) as avg_rating
       FROM products 
       GROUP BY category_id
       ORDER BY total_sales DESC
   """)
   price_distribution = spark.sql("""
       SELECT 
           CASE 
               WHEN price < 50 THEN 'Low Price'
               WHEN price BETWEEN 50 AND 200 THEN 'Medium Price'
               ELSE 'High Price'
           END as price_range,
           COUNT(*) as product_count,
           AVG(sales_count) as avg_sales
       FROM products
       GROUP BY price_range
   """)
   location_popularity = spark.sql("""
       SELECT origin_location, COUNT(*) as product_count,
              SUM(sales_count) as total_sales,
              AVG(price) as avg_price
       FROM products
       GROUP BY origin_location
       ORDER BY total_sales DESC
       LIMIT 10
   """)
   stock_alert = spark.sql("SELECT product_id, product_name, stock FROM products WHERE stock < 10")
   return {'product_id': product_id, 'category_stats': category_analysis.collect(), 'stock_alerts': stock_alert.collect()}

def order_processing_and_big_data_analysis(user_id, product_id, quantity, payment_method):
   order_id = int(time.time() * 1000) % 1000000
   order_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
   product_info = spark.sql(f"SELECT price, stock FROM products WHERE product_id = {product_id}").collect()[0]
   total_amount = float(product_info['price']) * int(quantity)
   if product_info['stock'] < int(quantity):
       return {'status': 'failed', 'message': 'insufficient_stock'}
   order_data = {
       'order_id': order_id,
       'user_id': int(user_id),
       'product_id': int(product_id),
       'quantity': int(quantity),
       'total_amount': total_amount,
       'payment_method': payment_method,
       'order_time': order_time,
       'status': 'unpaid',
       'shipping_status': 'pending'
   }
   order_df = spark.createDataFrame([order_data])
   order_df.write.mode("append").option("path", "/data/orders").saveAsTable("orders")
   spark.sql(f"UPDATE products SET stock = stock - {quantity}, sales_count = sales_count + {quantity} WHERE product_id = {product_id}")
   daily_sales_analysis = spark.sql("""
       SELECT DATE(order_time) as order_date, 
              COUNT(*) as order_count,
              SUM(total_amount) as daily_revenue,
              AVG(total_amount) as avg_order_value
       FROM orders 
       WHERE DATE(order_time) >= DATE_SUB(CURRENT_DATE(), 30)
       GROUP BY DATE(order_time)
       ORDER BY order_date DESC
   """)
   user_purchase_pattern = spark.sql("""
       SELECT user_id, COUNT(*) as order_frequency,
              SUM(total_amount) as total_spent,
              AVG(total_amount) as avg_spend_per_order,
              MAX(order_time) as last_purchase_time
       FROM orders
       GROUP BY user_id
       ORDER BY total_spent DESC
   """)
   product_recommendation_data = spark.sql("""
       SELECT user_id, product_id, quantity as rating
       FROM orders WHERE status IN ('paid', 'completed')
   """)
   als_model = ALS(userCol="user_id", itemCol="product_id", ratingCol="rating", nonnegative=True, implicitPrefs=True)
   recommendation_model = als_model.fit(spark.createDataFrame(product_recommendation_data.collect()))
   payment_method_analysis = spark.sql("""
       SELECT payment_method, COUNT(*) as usage_count,
              SUM(total_amount) as total_revenue,
              AVG(total_amount) as avg_transaction_amount
       FROM orders
       GROUP BY payment_method
       ORDER BY usage_count DESC
   """)
   return {'order_id': order_id, 'total_amount': total_amount, 'daily_analysis': daily_sales_analysis.collect(), 'user_patterns': user_purchase_pattern.collect()}

基于微信小程序的家乡特产销售平台文档展示

文档.png

💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目