毕设选题迷茫+技术栈困惑?SpringBoot宠物领养系统一站式解决方案来了

73 阅读6分钟

💖💖作者:计算机毕业设计小途 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目

@TOC

基于SpringBoot的宠物领养一站式服务系统介绍

基于SpringBoot的宠物领养一站式服务系统是一个集宠物信息管理、领养服务、日常护理指导于一体的综合性Web应用平台,该系统采用当前主流的SpringBoot+Vue+MySQL技术架构,为用户提供完整的宠物领养解决方案。系统前端采用Vue框架结合ElementUI组件库构建响应式用户界面,确保在不同设备上都能获得良好的交互体验,后端基于SpringBoot框架整合Spring、SpringMVC和MyBatis技术栈,实现了高效稳定的业务逻辑处理和数据持久化操作。系统功能覆盖用户注册登录、个人信息管理、宠物分类展示、宠物信息浏览、在线领养申请、宠物日常护理记录、系统公告发布、智能客服咨询等核心业务模块,管理员可通过后台管理界面对宠物信息、用户数据、领养流程进行统一管理,同时支持轮播图配置和公告信息分类管理,提升平台运营效率。整个系统采用B/S架构模式,支持多用户并发访问,数据存储采用MySQL关系型数据库,确保数据的完整性和安全性,开发环境可选择IDEA或PyCharm,同时提供Java+SpringBoot和Python+Django两种技术实现方案,满足不同开发偏好的技术需求,为宠物爱好者和流浪动物救助组织搭建了一个功能完善、操作便捷的数字化服务平台。

基于SpringBoot的宠物领养一站式服务系统演示视频

演示视频

基于SpringBoot的宠物领养一站式服务系统演示图片

宠物分类.png

宠物领养管理.png

宠物日常.png

宠物信息.png

登陆界面.png

系统首页.png

用户管理.png

基于SpringBoot的宠物领养一站式服务系统代码展示

from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
from django.contrib.auth.decorators import login_required
from .models import Pet, PetAdoption, PetCategory, User
from django.utils import timezone
from datetime import datetime, timedelta
import json
import pandas as pd

spark = SparkSession.builder.appName("PetAdoptionSystem").config("spark.sql.adaptive.enabled", "true").getOrCreate()

@csrf_exempt
@login_required
def pet_adoption_analysis(request):
   if request.method == 'POST':
       data = json.loads(request.body)
       pet_id = data.get('pet_id')
       user_id = data.get('user_id')
       pet_obj = Pet.objects.get(id=pet_id)
       user_obj = User.objects.get(id=user_id)
       adoption_history = PetAdoption.objects.filter(user=user_obj).values('pet__age', 'pet__category__name', 'adoption_date', 'status')
       df_data = list(adoption_history)
       if len(df_data) > 0:
           spark_df = spark.createDataFrame(df_data)
           spark_df.createOrReplaceTempView("adoption_records")
           success_rate = spark.sql("SELECT COUNT(*) as total, SUM(CASE WHEN status='completed' THEN 1 ELSE 0 END) as success FROM adoption_records").collect()[0]
           user_preference_score = (success_rate['success'] / success_rate['total']) * 100 if success_rate['total'] > 0 else 50
       else:
           user_preference_score = 50
       pet_compatibility = calculate_pet_compatibility(pet_obj, user_obj)
       adoption_record = PetAdoption.objects.create(
           pet=pet_obj,
           user=user_obj,
           adoption_date=timezone.now(),
           status='pending',
           compatibility_score=pet_compatibility,
           user_preference_score=user_preference_score
       )
       pet_obj.adoption_status = 'pending'
       pet_obj.save()
       return JsonResponse({
           'status': 'success',
           'adoption_id': adoption_record.id,
           'compatibility_score': pet_compatibility,
           'message': '领养申请提交成功,等待审核'
       })

def calculate_pet_compatibility(pet, user):
   user_pets = Pet.objects.filter(petadoption__user=user, petadoption__status='completed')
   if user_pets.exists():
       pet_data = []
       for up in user_pets:
           pet_data.append({
               'age': up.age,
               'size': 1 if up.size == 'small' else 2 if up.size == 'medium' else 3,
               'activity_level': up.activity_level,
               'care_difficulty': up.care_difficulty
           })
       df = pd.DataFrame(pet_data)
       spark_df = spark.createDataFrame(df)
       assembler = VectorAssembler(inputCols=['age', 'size', 'activity_level', 'care_difficulty'], outputCol='features')
       feature_df = assembler.transform(spark_df)
       lr = LinearRegression(featuresCol='features', labelCol='age')
       model = lr.fit(feature_df)
       current_pet_data = spark.createDataFrame([{
           'age': pet.age,
           'size': 1 if pet.size == 'small' else 2 if pet.size == 'medium' else 3,
           'activity_level': pet.activity_level,
           'care_difficulty': pet.care_difficulty
       }])
       current_pet_features = assembler.transform(current_pet_data)
       prediction = model.transform(current_pet_features).select('prediction').collect()[0]['prediction']
       compatibility_score = max(0, min(100, 100 - abs(prediction - pet.age) * 10))
   else:
       compatibility_score = 75
   return round(compatibility_score, 2)

@csrf_exempt
@login_required
def pet_daily_care_recommendation(request):
   if request.method == 'POST':
       data = json.loads(request.body)
       pet_id = data.get('pet_id')
       care_date = data.get('care_date', datetime.now().strftime('%Y-%m-%d'))
       pet_obj = Pet.objects.get(id=pet_id)
       historical_care = pet_obj.petdailycare_set.filter(
           care_date__gte=datetime.now() - timedelta(days=30)
       ).values('feeding_times', 'exercise_duration', 'health_score', 'care_date')
       care_data = list(historical_care)
       if len(care_data) >= 7:
           spark_df = spark.createDataFrame(care_data)
           spark_df.createOrReplaceTempView("daily_care")
           avg_stats = spark.sql("""
               SELECT 
                   AVG(feeding_times) as avg_feeding,
                   AVG(exercise_duration) as avg_exercise,
                   AVG(health_score) as avg_health
               FROM daily_care
           """).collect()[0]
           recommended_feeding = max(2, min(4, round(avg_stats['avg_feeding'])))
           recommended_exercise = max(30, min(120, round(avg_stats['avg_exercise'])))
           health_trend = spark.sql("""
               SELECT 
                   (MAX(health_score) - MIN(health_score)) as health_change
               FROM daily_care
           """).collect()[0]['health_change']
           care_quality = "优秀" if health_trend > 10 else "良好" if health_trend > 0 else "需要改善"
       else:
           recommended_feeding = 3
           recommended_exercise = 60
           care_quality = "数据不足"
       weather_factor = get_weather_adjustment()
       final_exercise = round(recommended_exercise * weather_factor)
       care_plan = {
           'pet_name': pet_obj.name,
           'recommended_feeding_times': recommended_feeding,
           'recommended_exercise_duration': final_exercise,
           'care_quality_assessment': care_quality,
           'special_notes': generate_care_notes(pet_obj, care_quality)
       }
       return JsonResponse({
           'status': 'success',
           'care_plan': care_plan,
           'generated_date': care_date
       })

def get_weather_adjustment():
   return 0.8

def generate_care_notes(pet, quality):
   base_notes = f"根据{pet.name}的品种特性,建议"
   if quality == "需要改善":
       return base_notes + "增加互动时间,关注营养均衡"
   elif quality == "良好":
       return base_notes + "保持当前护理频率,适当增加运动"
   else:
       return base_notes + "继续保持优秀的护理标准"

@csrf_exempt
@login_required  
def pet_category_intelligence_analysis(request):
   if request.method == 'GET':
       all_pets = Pet.objects.all().values('category__name', 'age', 'adoption_status', 'health_status', 'size')
       pets_data = list(all_pets)
       if len(pets_data) > 10:
           spark_df = spark.createDataFrame(pets_data)
           spark_df.createOrReplaceTempView("all_pets")
           category_stats = spark.sql("""
               SELECT 
                   category__name as category,
                   COUNT(*) as total_count,
                   AVG(age) as avg_age,
                   COUNT(CASE WHEN adoption_status='adopted' THEN 1 END) as adopted_count,
                   COUNT(CASE WHEN health_status='healthy' THEN 1 END) as healthy_count
               FROM all_pets
               GROUP BY category__name
               ORDER BY total_count DESC
           """).collect()
           adoption_trend = spark.sql("""
               SELECT 
                   category__name as category,
                   (COUNT(CASE WHEN adoption_status='adopted' THEN 1 END) * 100.0 / COUNT(*)) as adoption_rate
               FROM all_pets
               GROUP BY category__name
               HAVING COUNT(*) >= 3
               ORDER BY adoption_rate DESC
           """).collect()
           popular_categories = []
           for row in category_stats[:5]:
               category_info = {
                   'name': row['category'],
                   'total_pets': row['total_count'],
                   'average_age': round(row['avg_age'], 1),
                   'adoption_rate': round((row['adopted_count'] / row['total_count']) * 100, 1),
                   'health_rate': round((row['healthy_count'] / row['total_count']) * 100, 1)
               }
               popular_categories.append(category_info)
           recommendation_engine = generate_category_recommendations(adoption_trend)
       else:
           popular_categories = []
           recommendation_engine = "数据量不足,无法生成智能推荐"
       analysis_result = {
           'popular_categories': popular_categories,
           'recommendation_system': recommendation_engine,
           'analysis_timestamp': timezone.now().isoformat(),
           'total_categories_analyzed': len(popular_categories)
       }
       return JsonResponse({
           'status': 'success',
           'intelligence_analysis': analysis_result
       })

def generate_category_recommendations(trend_data):
   if len(trend_data) >= 3:
       top_category = trend_data[0]
       return f"推荐关注{top_category['category']}类宠物,领养成功率达{top_category['adoption_rate']:.1f}%"
   else:
       return "建议增加宠物数据样本以获得更准确的推荐"

基于SpringBoot的宠物领养一站式服务系统文档展示

文档.png

💖💖作者:计算机毕业设计小途 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目