还在做传统管理系统?机器学习就业岗位推荐系统才是2026毕设趋势

35 阅读5分钟

💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目

@TOC

基于机器学习的就业岗位推荐系统介绍

《基于机器学习的就业岗位推荐系统》是一个集智能推荐、招聘管理和求职服务于一体的综合性Web应用系统,采用SpringBoot作为后端框架,结合Vue和ElementUI构建用户友好的前端界面,使用MySQL数据库存储海量招聘数据。系统核心亮点在于运用机器学习算法实现智能岗位推荐功能,通过分析用户简历信息、技能匹配度、行业偏好等多维度数据,为求职者精准推荐最适合的就业岗位,同时为企业智能筛选匹配度高的候选人。系统功能模块完整丰富,包含用户管理、企业管理、招聘信息发布、简历投递、面试安排等核心业务流程,还集成了薪资预测功能,利用机器学习模型根据岗位要求、地区、行业类别等因素预测薪资水平。系统采用B/S架构设计,支持多角色权限管理,求职者可以创建个人简历、浏览岗位信息、在线投递简历,企业用户可以发布招聘信息、查看应聘者简历、安排面试流程,管理员则负责用户审核、系统配置、数据统计等后台管理工作。此外,系统还提供公告信息管理、轮播图展示、系统日志记录等辅助功能,确保系统运行稳定且用户体验良好,为现代化的人力资源管理提供了智能化、自动化的技术解决方案。

基于机器学习的就业岗位推荐系统演示视频

演示视频

基于机器学习的就业岗位推荐系统演示图片

登陆界面.png

简历投递.png

面试安排.png

面试结果.png

面试信息.png

企业信息.png

系统首页.png

薪资预测.png

盐城岗位.png

用户管理.png

招聘信息.png

基于机器学习的就业岗位推荐系统代码展示

import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.ml.classification.RandomForestClassifier;
import org.apache.spark.ml.regression.LinearRegression;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.springframework.stereotype.Service;
import org.springframework.beans.factory.annotation.Autowired;
import java.util.*;
@Service
public class JobRecommendationService {
    private SparkSession spark = SparkSession.builder().appName("JobRecommendationSystem").master("local[*]").getOrCreate();
    @Autowired
    private UserMapper userMapper;
    @Autowired
    private JobMapper jobMapper;
    @Autowired
    private ResumeMapper resumeMapper;
    public List<JobRecommendation> getPersonalizedJobRecommendations(Long userId) {
        User user = userMapper.selectById(userId);
        Resume resume = resumeMapper.selectByUserId(userId);
        List<Job> allJobs = jobMapper.selectAllActiveJobs();
        Dataset<Row> userJobData = spark.read().option("header", "true").option("inferSchema", "true").csv("user_job_interactions.csv");
        Dataset<Row> jobFeatures = spark.read().option("header", "true").option("inferSchema", "true").csv("job_features.csv");
        Dataset<Row> userFeatures = spark.createDataFrame(Arrays.asList(
            RowFactory.create(userId, resume.getEducationLevel(), resume.getExperienceYears(), 
            resume.getSkillScore(), user.getPreferredSalary(), user.getPreferredLocation())
        ), new StructType().add("userId", DataTypes.LongType).add("education", DataTypes.IntegerType)
        .add("experience", DataTypes.IntegerType).add("skillScore", DataTypes.DoubleType)
        .add("preferredSalary", DataTypes.DoubleType).add("preferredLocation", DataTypes.IntegerType));
        Dataset<Row> combinedData = userJobData.join(jobFeatures, "jobId").join(userFeatures, "userId");
        VectorAssembler assembler = new VectorAssembler().setInputCols(new String[]{"education", "experience", "skillScore", "jobRequiredEducation", "jobRequiredExperience", "jobSalaryRange", "jobLocationId"}).setOutputCol("features");
        RandomForestClassifier rf = new RandomForestClassifier().setLabelCol("isMatch").setFeaturesCol("features").setNumTrees(100);
        Pipeline pipeline = new Pipeline().setStages(new PipelineStage[]{assembler, rf});
        PipelineModel model = pipeline.fit(combinedData);
        List<JobRecommendation> recommendations = new ArrayList<>();
        for (Job job : allJobs) {
            Dataset<Row> testData = spark.createDataFrame(Arrays.asList(
                RowFactory.create(resume.getEducationLevel(), resume.getExperienceYears(), resume.getSkillScore(),
                job.getRequiredEducation(), job.getRequiredExperience(), job.getSalaryRange(), job.getLocationId())
            ), assembler.getInputSchema());
            Dataset<Row> predictions = model.transform(testData);
            double matchScore = predictions.select("probability").first().getAs(Vector.class, 0).toArray()[1];
            if (matchScore > 0.6) {
                JobRecommendation recommendation = new JobRecommendation();
                recommendation.setJobId(job.getJobId());
                recommendation.setUserId(userId);
                recommendation.setMatchScore(matchScore);
                recommendation.setRecommendReason(generateRecommendReason(resume, job, matchScore));
                recommendations.add(recommendation);
            }
        }
        recommendations.sort((a, b) -> Double.compare(b.getMatchScore(), a.getMatchScore()));
        return recommendations.subList(0, Math.min(10, recommendations.size()));
    }
    public SalaryPredictionResult predictSalary(SalaryPredictionRequest request) {
        Dataset<Row> salaryData = spark.read().option("header", "true").option("inferSchema", "true").csv("salary_dataset.csv");
        Dataset<Row> filteredData = salaryData.filter("industryId = " + request.getIndustryId() + " AND locationId = " + request.getLocationId());
        VectorAssembler assembler = new VectorAssembler().setInputCols(new String[]{"education", "experience", "skillLevel", "industryId", "locationId", "companySize"}).setOutputCol("features");
        Dataset<Row> assembledData = assembler.transform(filteredData);
        LinearRegression lr = new LinearRegression().setLabelCol("salary").setFeaturesCol("features").setMaxIter(100).setRegParam(0.1);
        Dataset<Row>[] splits = assembledData.randomSplit(new double[]{0.8, 0.2}, 42);
        Dataset<Row> trainingData = splits[0];
        Dataset<Row> testData = splits[1];
        LinearRegressionModel model = lr.fit(trainingData);
        Dataset<Row> inputData = spark.createDataFrame(Arrays.asList(
            RowFactory.create(request.getEducation(), request.getExperience(), request.getSkillLevel(),
            request.getIndustryId(), request.getLocationId(), request.getCompanySize())
        ), assembler.getInputSchema());
        Dataset<Row> predictionData = assembler.transform(inputData);
        Dataset<Row> predictions = model.transform(predictionData);
        double predictedSalary = predictions.select("prediction").first().getDouble(0);
        Dataset<Row> industryStats = salaryData.filter("industryId = " + request.getIndustryId()).agg(avg("salary").alias("avgSalary"), min("salary").alias("minSalary"), max("salary").alias("maxSalary"));
        Row stats = industryStats.first();
        SalaryPredictionResult result = new SalaryPredictionResult();
        result.setPredictedSalary(Math.round(predictedSalary));
        result.setIndustryAverage(Math.round(stats.getDouble(0)));
        result.setSalaryRange(Math.round(stats.getDouble(1)) + " - " + Math.round(stats.getDouble(2)));
        result.setConfidenceLevel(calculateConfidenceLevel(model, testData));
        result.setPredictionFactors(generatePredictionFactors(request, stats.getDouble(0)));
        return result;
    }
    public ResumeMatchResult matchResumeToJob(Long resumeId, Long jobId) {
        Resume resume = resumeMapper.selectById(resumeId);
        Job job = jobMapper.selectById(jobId);
        Dataset<Row> resumeJobData = spark.read().option("header", "true").option("inferSchema", "true").csv("resume_job_matches.csv");
        Dataset<Row> skillsData = spark.read().option("header", "true").option("inferSchema", "true").csv("skills_mapping.csv");
        List<String> resumeSkills = Arrays.asList(resume.getSkills().split(","));
        List<String> jobRequiredSkills = Arrays.asList(job.getRequiredSkills().split(","));
        Dataset<Row> resumeSkillsDF = spark.createDataFrame(resumeSkills.stream().map(skill -> RowFactory.create(skill.trim())).collect(Collectors.toList()), new StructType().add("skill", DataTypes.StringType));
        Dataset<Row> jobSkillsDF = spark.createDataFrame(jobRequiredSkills.stream().map(skill -> RowFactory.create(skill.trim())).collect(Collectors.toList()), new StructType().add("skill", DataTypes.StringType));
        Dataset<Row> matchedSkills = resumeSkillsDF.join(jobSkillsDF, "skill");
        long matchedSkillCount = matchedSkills.count();
        double skillMatchRate = (double) matchedSkillCount / jobRequiredSkills.size();
        double educationMatch = calculateEducationMatch(resume.getEducationLevel(), job.getRequiredEducation());
        double experienceMatch = calculateExperienceMatch(resume.getExperienceYears(), job.getRequiredExperience());
        double locationMatch = resume.getPreferredLocation().equals(job.getLocation()) ? 1.0 : 0.5;
        double salaryMatch = calculateSalaryMatch(resume.getExpectedSalary(), job.getSalaryMin(), job.getSalaryMax());
        Dataset<Row> matchFeatures = spark.createDataFrame(Arrays.asList(
            RowFactory.create(skillMatchRate, educationMatch, experienceMatch, locationMatch, salaryMatch)
        ), new StructType().add("skillMatch", DataTypes.DoubleType).add("educationMatch", DataTypes.DoubleType)
        .add("experienceMatch", DataTypes.DoubleType).add("locationMatch", DataTypes.DoubleType).add("salaryMatch", DataTypes.DoubleType));
        VectorAssembler assembler = new VectorAssembler().setInputCols(new String[]{"skillMatch", "educationMatch", "experienceMatch", "locationMatch", "salaryMatch"}).setOutputCol("features");
        Dataset<Row> assembledFeatures = assembler.transform(matchFeatures);
        double[] weights = {0.4, 0.2, 0.2, 0.1, 0.1};
        double overallMatchScore = skillMatchRate * weights[0] + educationMatch * weights[1] + experienceMatch * weights[2] + locationMatch * weights[3] + salaryMatch * weights[4];
        ResumeMatchResult result = new ResumeMatchResult();
        result.setResumeId(resumeId);
        result.setJobId(jobId);
        result.setOverallMatchScore(Math.round(overallMatchScore * 100.0) / 100.0);
        result.setSkillMatchRate(Math.round(skillMatchRate * 100.0) / 100.0);
        result.setEducationMatchScore(educationMatch);
        result.setExperienceMatchScore(experienceMatch);
        result.setLocationMatchScore(locationMatch);
        result.setSalaryMatchScore(salaryMatch);
        result.setMatchedSkills(matchedSkills.select("skill").as(Encoders.STRING()).collectAsList());
        result.setMissingSkills(jobSkillsDF.except(resumeSkillsDF).select("skill").as(Encoders.STRING()).collectAsList());
        result.setMatchLevel(determineMatchLevel(overallMatchScore));
        result.setSuggestions(generateMatchSuggestions(result));
        return result;
    }
}

基于机器学习的就业岗位推荐系统文档展示

文档.png

💖💖作者:计算机编程小咖 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目