计算机编程指导师
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏、爬虫、深度学习、机器学习、预测等实战项目。
⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡如果遇到具体的技术问题或计算机毕设方面需求,你也可以在主页上↑↑联系我~~
⚡⚡获取源码主页-->计算机编程指导师
手机数据分析系统- 简介
基于Hadoop+Django的手机详细信息数据分析系统是一个集成大数据处理技术与Web开发框架的综合性数据分析平台。该系统充分利用Hadoop分布式文件系统(HDFS)的强大存储能力和Spark计算引擎的高效数据处理性能,结合Django框架构建用户友好的Web界面,实现对手机市场数据的深度挖掘与可视化展示。系统通过Spark SQL进行复杂的数据查询与统计分析,运用Pandas和NumPy进行数据清洗与特征工程,并采用K-Means聚类算法对手机产品进行智能分群。前端采用Vue.js配合ElementUI组件库构建响应式界面,通过ECharts图表库将分析结果以直观的图表形式呈现给用户。系统涵盖市场宏观格局分析、品牌深度剖析、价格与硬件配置关联性分析、技术演进趋势分析以及基于机器学习的市场分群等核心功能模块,能够为手机行业的市场研究、产品规划和消费决策提供有力的数据支撑。
手机数据分析系统-技术
开发语言:Python或Java(两个版本都支持)
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL
手机数据分析系统- 背景
随着智能手机市场竞争日趋激烈,各大厂商在产品设计、定价策略和技术创新方面面临着前所未有的挑战。手机产品的技术参数日益复杂多样,从处理器性能、内存配置到摄像头像素、电池容量,每个硬件指标都直接影响着消费者的购买决策和产品的市场表现。传统的数据分析方法已难以应对海量手机产品数据的处理需求,特别是在处理跨品牌、跨年度的大规模产品数据时,常常面临处理速度慢、分析维度有限等问题。大数据技术的兴起为解决这一难题提供了新的思路,Hadoop生态系统凭借其分布式存储与计算能力,能够高效处理大规模的结构化数据,而Spark的内存计算优势更是大幅提升了数据分析的实时性。同时,机器学习算法在商业数据分析中的应用越来越广泛,通过无监督学习方法可以发现数据中隐藏的模式和规律,为市场细分和产品定位提供科学依据。
本课题的研究具有重要的实际应用价值和技术探索意义。从技术层面来看,该系统将大数据处理技术与Web应用开发相结合,展示了Hadoop+Spark技术栈在实际业务场景中的应用方法,为类似的数据分析项目提供了可参考的技术方案。通过集成多种数据处理和可视化技术,系统能够实现从数据存储、处理到展示的完整流程,体现了现代数据科学项目的典型架构模式。从商业应用角度而言,系统能够帮助手机厂商更好地理解市场格局和消费趋势,通过量化分析各品牌的定价策略和硬件配置特点,为产品规划和市场定位决策提供数据支撑。对于消费者而言,系统提供的多维度分析结果可以作为购机参考,帮助用户在复杂的产品选择中做出更明智的决定。从学术研究价值来说,系统运用的聚类分析方法能够发现手机市场中的潜在细分群体,为相关领域的市场研究提供新的视角。虽然作为毕业设计项目,系统的规模和复杂度相对有限,但其体现的技术整合思路和分析方法具有一定的借鉴意义。
手机数据分析系统-视频展示
手机数据分析系统-图片展示
手机数据分析系统-代码展示
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler, StandardScaler
from django.http import JsonResponse
from django.views import View
import pandas as pd
import numpy as np
from pyspark.sql.functions import col, avg, count, max, min, when
import json
spark = SparkSession.builder.appName("MobileDataAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()
class MarketShareAnalysisView(View):
def get(self, request):
mobile_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/mobile_data/featured_mobile_data.csv")
brand_counts = mobile_df.groupBy("Company").agg(count("*").alias("product_count")).orderBy(col("product_count").desc())
total_products = mobile_df.count()
brand_share_df = brand_counts.withColumn("market_share", col("product_count") / total_products * 100)
processor_df = mobile_df.withColumn("ProcessorBrand", when(col("Processor").contains("Snapdragon"), "Qualcomm").when(col("Processor").contains("MediaTek"), "MediaTek").when(col("Processor").contains("Apple"), "Apple").when(col("Processor").contains("Exynos"), "Samsung").otherwise("Others"))
processor_counts = processor_df.groupBy("ProcessorBrand").agg(count("*").alias("processor_count")).orderBy(col("processor_count").desc())
price_ranges = mobile_df.withColumn("price_range", when(col("Price_USD") < 200, "Budget").when(col("Price_USD") < 500, "Mid-range").when(col("Price_USD") < 1000, "Premium").otherwise("Flagship"))
price_distribution = price_ranges.groupBy("price_range").agg(count("*").alias("count")).orderBy(col("count").desc())
yearly_trends = mobile_df.groupBy("Company", "推出年份").agg(count("*").alias("yearly_count")).orderBy(col("推出年份").desc(), col("yearly_count").desc())
brand_data = [{"brand": row["Company"], "count": row["product_count"], "share": round(row["market_share"], 2)} for row in brand_share_df.collect()]
processor_data = [{"brand": row["ProcessorBrand"], "count": row["processor_count"]} for row in processor_counts.collect()]
price_data = [{"range": row["price_range"], "count": row["count"]} for row in price_distribution.collect()]
trend_data = [{"brand": row["Company"], "year": row["推出年份"], "count": row["yearly_count"]} for row in yearly_trends.collect()]
return JsonResponse({"brand_market_share": brand_data, "processor_distribution": processor_data, "price_distribution": price_data, "yearly_trends": trend_data})
class BrandStrategyAnalysisView(View):
def get(self, request):
mobile_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/mobile_data/featured_mobile_data.csv")
brand_pricing = mobile_df.groupBy("Company").agg(avg("Price_USD").alias("avg_price"), min("Price_USD").alias("min_price"), max("Price_USD").alias("max_price"), count("*").alias("product_count")).orderBy(col("avg_price").desc())
brand_hardware = mobile_df.groupBy("Company").agg(avg("RAM").alias("avg_ram"), avg("Storage_GB").alias("avg_storage"), avg("BatteryCapacity_mAh").alias("avg_battery")).orderBy(col("avg_ram").desc())
processor_df = mobile_df.withColumn("ProcessorBrand", when(col("Processor").contains("Snapdragon"), "Qualcomm").when(col("Processor").contains("MediaTek"), "MediaTek").when(col("Processor").contains("Apple"), "Apple").when(col("Processor").contains("Exynos"), "Samsung").otherwise("Others"))
brand_processor_pref = processor_df.groupBy("Company", "ProcessorBrand").agg(count("*").alias("usage_count")).orderBy(col("Company"), col("usage_count").desc())
camera_df = mobile_df.withColumn("RearCamera_MP", col("RearCamera").cast("int"))
brand_camera = camera_df.groupBy("Company").agg(avg("RearCamera_MP").alias("avg_camera_mp")).orderBy(col("avg_camera_mp").desc())
screen_analysis = mobile_df.groupBy("Company").agg(avg("ScreenSize_inches").alias("avg_screen_size")).orderBy(col("avg_screen_size").desc())
pricing_data = [{"brand": row["Company"], "avg_price": round(row["avg_price"], 2), "min_price": row["min_price"], "max_price": row["max_price"], "product_count": row["product_count"]} for row in brand_pricing.collect()]
hardware_data = [{"brand": row["Company"], "avg_ram": round(row["avg_ram"], 2), "avg_storage": round(row["avg_storage"], 2), "avg_battery": round(row["avg_battery"], 2)} for row in brand_hardware.collect()]
processor_data = [{"brand": row["Company"], "processor": row["ProcessorBrand"], "count": row["usage_count"]} for row in brand_processor_pref.collect()]
camera_data = [{"brand": row["Company"], "avg_camera": round(row["avg_camera_mp"], 2)} for row in brand_camera.collect()]
screen_data = [{"brand": row["Company"], "avg_screen": round(row["avg_screen_size"], 2)} for row in screen_analysis.collect()]
return JsonResponse({"brand_pricing_strategy": pricing_data, "brand_hardware_config": hardware_data, "processor_preferences": processor_data, "camera_analysis": camera_data, "screen_analysis": screen_data})
class MarketSegmentationView(View):
def get(self, request):
mobile_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/mobile_data/featured_mobile_data.csv")
feature_cols = ["Price_USD", "RAM", "Storage_GB", "BatteryCapacity_mAh"]
clean_df = mobile_df.select("Company", "Model", *feature_cols).na.drop()
assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
assembled_df = assembler.transform(clean_df)
scaler = StandardScaler(inputCol="features", outputCol="scaled_features")
scaler_model = scaler.fit(assembled_df)
scaled_df = scaler_model.transform(assembled_df)
kmeans = KMeans(featuresCol="scaled_features", predictionCol="cluster", k=4, seed=42)
kmeans_model = kmeans.fit(scaled_df)
clustered_df = kmeans_model.transform(scaled_df)
cluster_analysis = clustered_df.groupBy("cluster").agg(avg("Price_USD").alias("avg_price"), avg("RAM").alias("avg_ram"), avg("Storage_GB").alias("avg_storage"), avg("BatteryCapacity_mAh").alias("avg_battery"), count("*").alias("cluster_size"))
brand_cluster_dist = clustered_df.groupBy("cluster", "Company").agg(count("*").alias("brand_count")).orderBy("cluster", col("brand_count").desc())
processor_df = mobile_df.withColumn("ProcessorBrand", when(col("Processor").contains("Snapdragon"), "Qualcomm").when(col("Processor").contains("MediaTek"), "MediaTek").when(col("Processor").contains("Apple"), "Apple").when(col("Processor").contains("Exynos"), "Samsung").otherwise("Others"))
clustered_with_processor = clustered_df.join(processor_df.select("Model", "ProcessorBrand"), on="Model", how="left")
processor_cluster_dist = clustered_with_processor.groupBy("cluster", "ProcessorBrand").agg(count("*").alias("processor_count")).orderBy("cluster", col("processor_count").desc())
cluster_data = [{"cluster": row["cluster"], "avg_price": round(row["avg_price"], 2), "avg_ram": round(row["avg_ram"], 2), "avg_storage": round(row["avg_storage"], 2), "avg_battery": round(row["avg_battery"], 2), "size": row["cluster_size"]} for row in cluster_analysis.collect()]
brand_dist_data = [{"cluster": row["cluster"], "brand": row["Company"], "count": row["brand_count"]} for row in brand_cluster_dist.collect()]
processor_dist_data = [{"cluster": row["cluster"], "processor": row["ProcessorBrand"], "count": row["processor_count"]} for row in processor_cluster_dist.collect()]
return JsonResponse({"cluster_profiles": cluster_data, "brand_distribution": brand_dist_data, "processor_distribution": processor_dist_data})
手机数据分析系统-结语
为什么计算机毕设都在做大数据分析?Hadoop+Django手机数据系统揭秘 毕业设计/选题推荐/深度学习/数据分析/机器学习/数据挖掘/随机森林/源码
如果遇到具体的技术问题或计算机毕设方面需求,你也可以问我,我会尽力帮你分析和解决问题所在,支持我记得一键三连,再点个关注,学习不迷路!
⚡⚡获取源码主页--> 计算机编程指导师
⚡⚡如果遇到具体的技术问题或计算机毕设方面需求,你也可以在主页上↑↑联系我~~