搭建网站框架音乐系统 | 50个毕设项目中脱颖而出:网站框架音乐系统融合12项核心技术点详解

51 阅读6分钟

💖💖作者:计算机毕业设计杰瑞 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学校实战项目 计算机毕业设计选题推荐

搭建网站框架音乐系统介绍

网站框架音乐系统是一个集成大数据技术的综合性音乐平台,采用Hadoop+Spark大数据框架作为核心技术架构,支持Python+Django和Java+SpringBoot双版本开发模式。系统前端采用Vue+ElementUI构建现代化用户界面,结合Echarts实现数据可视化展示,后端通过MySQL数据库存储音乐信息、用户数据及播放记录。系统具备完整的音乐生态功能,包括系统首页展示、用户注册登录管理、歌曲分类与标签体系、在线试听与音乐购买、个性化音乐播放器、我的歌单管理、详细音乐信息展示、在线留言互动、系统后台管理以及个人中心设置等十二大核心模块。通过Hadoop分布式存储处理大量音乐文件,利用Spark进行实时数据分析和推荐算法计算,结合Pandas和NumPy进行数据预处理,为用户提供智能化的音乐服务体验,实现了传统音乐网站向大数据驱动音乐平台的技术升级。

搭建网站框架音乐系统演示视频

演示视频

搭建网站框架音乐系统演示图片

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

搭建网站框架音乐系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, desc, asc
from django.http import JsonResponse
from django.shortcuts import get_object_or_404
from django.db import transaction
from django.core.paginator import Paginator
from django.contrib.auth.decorators import login_required
import pandas as pd
import numpy as np
from models import Music, User, Playlist, PlayRecord

spark = SparkSession.builder.appName("MusicDataAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

@login_required
def music_play_service(request, music_id):
    try:
        music = get_object_or_404(Music, id=music_id)
        user = request.user
        with transaction.atomic():
            music.play_count += 1
            music.save()
            play_record = PlayRecord.objects.create(
                user=user,
                music=music,
                play_duration=0,
                device_type=request.META.get('HTTP_USER_AGENT', 'unknown')
            )
            play_data = PlayRecord.objects.filter(music=music).values(
                'user_id', 'play_duration', 'created_at'
            )
            df_play = pd.DataFrame(list(play_data))
            if not df_play.empty:
                spark_df = spark.createDataFrame(df_play)
                music_stats = spark_df.groupBy().agg(
                    count("user_id").alias("total_plays"),
                    avg("play_duration").alias("avg_duration")
                ).collect()[0]
                music.avg_play_duration = float(music_stats['avg_duration']) if music_stats['avg_duration'] else 0
                music.total_unique_plays = spark_df.select("user_id").distinct().count()
                music.save()
            similar_users = PlayRecord.objects.filter(music=music).exclude(user=user).values_list('user_id', flat=True)[:10]
            recommendations = []
            if similar_users:
                similar_music = PlayRecord.objects.filter(
                    user_id__in=similar_users
                ).exclude(music=music).values('music__id', 'music__title').annotate(
                    play_frequency=count('music_id')
                ).order_by('-play_frequency')[:5]
                recommendations = list(similar_music)
        return JsonResponse({
            'status': 'success',
            'music_info': {
                'id': music.id,
                'title': music.title,
                'artist': music.artist,
                'file_url': music.file_url,
                'play_count': music.play_count,
                'duration': music.duration
            },
            'recommendations': recommendations,
            'play_record_id': play_record.id
        })
    except Exception as e:
        return JsonResponse({'status': 'error', 'message': str(e)})

def playlist_management_service(request):
    try:
        user = request.user
        action = request.POST.get('action')
        if action == 'create':
            playlist_name = request.POST.get('playlist_name')
            description = request.POST.get('description', '')
            with transaction.atomic():
                playlist = Playlist.objects.create(
                    name=playlist_name,
                    user=user,
                    description=description,
                    is_public=request.POST.get('is_public', False)
                )
                user_playlists = Playlist.objects.filter(user=user).values(
                    'id', 'name', 'created_at', 'music_count'
                )
                df_playlists = pd.DataFrame(list(user_playlists))
                if not df_playlists.empty:
                    spark_df = spark.createDataFrame(df_playlists)
                    playlist_stats = spark_df.groupBy().agg(
                        count("id").alias("total_playlists"),
                        avg("music_count").alias("avg_music_per_playlist")
                    ).collect()[0]
                    user.total_playlists = int(playlist_stats['total_playlists'])
                    user.avg_playlist_size = float(playlist_stats['avg_music_per_playlist']) if playlist_stats['avg_music_per_playlist'] else 0
                    user.save()
        elif action == 'add_music':
            playlist_id = request.POST.get('playlist_id')
            music_id = request.POST.get('music_id')
            playlist = get_object_or_404(Playlist, id=playlist_id, user=user)
            music = get_object_or_404(Music, id=music_id)
            if not playlist.music_items.filter(id=music_id).exists():
                playlist.music_items.add(music)
                playlist.music_count += 1
                playlist.save()
                playlist_music = playlist.music_items.values('category', 'artist', 'duration')
                df_music = pd.DataFrame(list(playlist_music))
                if not df_music.empty:
                    spark_df = spark.createDataFrame(df_music)
                    category_stats = spark_df.groupBy("category").agg(
                        count("category").alias("count")
                    ).orderBy(desc("count")).collect()
                    playlist.dominant_category = category_stats[0]['category'] if category_stats else 'Unknown'
                    playlist.total_duration = spark_df.agg({"duration": "sum"}).collect()[0][0]
                    playlist.save()
        user_playlists = Playlist.objects.filter(user=user).order_by('-created_at')
        paginator = Paginator(user_playlists, 10)
        page_number = request.GET.get('page', 1)
        page_playlists = paginator.get_page(page_number)
        return JsonResponse({
            'status': 'success',
            'playlists': [{
                'id': p.id,
                'name': p.name,
                'music_count': p.music_count,
                'total_duration': p.total_duration,
                'dominant_category': p.dominant_category,
                'created_at': p.created_at.strftime('%Y-%m-%d')
            } for p in page_playlists],
            'pagination': {
                'current_page': page_playlists.number,
                'total_pages': paginator.num_pages,
                'has_next': page_playlists.has_next(),
                'has_previous': page_playlists.has_previous()
            }
        })
    except Exception as e:
        return JsonResponse({'status': 'error', 'message': str(e)})

def music_recommendation_service(request):
    try:
        user = request.user
        user_play_records = PlayRecord.objects.filter(user=user).values(
            'music__id', 'music__category', 'music__artist', 'play_duration', 'music__title'
        )
        df_user_history = pd.DataFrame(list(user_play_records))
        recommendations = []
        if not df_user_history.empty:
            spark_df = spark.createDataFrame(df_user_history)
            category_preferences = spark_df.groupBy("music__category").agg(
                count("music__id").alias("play_count"),
                avg("play_duration").alias("avg_duration")
            ).orderBy(desc("play_count")).collect()
            preferred_categories = [row['music__category'] for row in category_preferences[:3]]
            artist_preferences = spark_df.groupBy("music__artist").agg(
                count("music__id").alias("play_count")
            ).orderBy(desc("play_count")).collect()
            preferred_artists = [row['music__artist'] for row in artist_preferences[:5]]
            played_music_ids = df_user_history['music__id'].unique().tolist()
            candidate_music = Music.objects.filter(
                category__in=preferred_categories
            ).exclude(id__in=played_music_ids).values(
                'id', 'title', 'artist', 'category', 'play_count', 'rating'
            )
            df_candidates = pd.DataFrame(list(candidate_music))
            if not df_candidates.empty:
                spark_candidates = spark.createDataFrame(df_candidates)
                weighted_scores = spark_candidates.withColumn(
                    "preference_score",
                    col("play_count") * 0.4 + col("rating") * 0.6
                ).orderBy(desc("preference_score"))
                top_recommendations = weighted_scores.limit(10).collect()
                recommendations = [{
                    'music_id': row['id'],
                    'title': row['title'],
                    'artist': row['artist'],
                    'category': row['category'],
                    'score': float(row['preference_score']),
                    'reason': f"基于您对{row['category']}类音乐的喜好推荐"
                } for row in top_recommendations]
            collaborative_users = PlayRecord.objects.filter(
                music__id__in=played_music_ids
            ).exclude(user=user).values('user_id').annotate(
                common_count=count('music_id')
            ).filter(common_count__gte=2).order_by('-common_count')[:5]
            if collaborative_users:
                similar_user_ids = [u['user_id'] for u in collaborative_users]
                collaborative_music = PlayRecord.objects.filter(
                    user_id__in=similar_user_ids
                ).exclude(music_id__in=played_music_ids).values(
                    'music__id', 'music__title', 'music__artist'
                ).annotate(play_frequency=count('music_id')).order_by('-play_frequency')[:5]
                collab_recommendations = [{
                    'music_id': item['music__id'],
                    'title': item['music__title'],
                    'artist': item['music__artist'],
                    'score': item['play_frequency'],
                    'reason': "相似用户也喜欢的音乐"
                } for item in collaborative_music]
                recommendations.extend(collab_recommendations)
        if not recommendations:
            popular_music = Music.objects.order_by('-play_count')[:10].values(
                'id', 'title', 'artist', 'category', 'play_count'
            )
            recommendations = [{
                'music_id': music['id'],
                'title': music['title'],
                'artist': music['artist'],
                'category': music['category'],
                'score': music['play_count'],
                'reason': "热门音乐推荐"
            } for music in popular_music]
        return JsonResponse({
            'status': 'success',
            'recommendations': recommendations[:15],
            'user_preferences': {
                'preferred_categories': preferred_categories if 'preferred_categories' in locals() else [],
                'preferred_artists': preferred_artists if 'preferred_artists' in locals() else []
            }
        })
    except Exception as e:
        return JsonResponse({'status': 'error', 'message': str(e)})

搭建网站框架音乐系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计杰瑞 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学校实战项目 计算机毕业设计选题推荐