2026毕业设计选题Python知识图谱系统去中心化架构设计与实现

48 阅读7分钟

前言

💖💖作者:计算机程序员小杨 💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💕💕文末获取源码联系 计算机程序员小杨 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目 计算机毕业设计选题 💜💜

一.开发工具简介

开发语言:Java+Python(两个版本都支持) 后端框架:Spring Boot(Spring+SpringMVC+Mybatis)+Django(两个版本都支持) 前端:Vue+ElementUI+HTML 数据库:MySQL 系统架构:B/S 开发工具:IDEA(Java的)或者PyCharm(Python的)

二.系统内容简介

本Python去中心化知识图谱系统采用Django框架作为后端核心,结合Vue+ElementUI前端技术和MySQL数据库,构建了一个基于B/S架构的智能知识管理平台。系统的核心特色在于采用去中心化架构设计,打破传统集中式知识管理的局限性,通过分布式节点的方式实现知识的存储、检索和共享。主页提供知识图谱的可视化展示和快速检索入口,用户管理模块实现多角色权限控制和用户行为跟踪,知识类型管理对不同领域的知识进行分类组织和标签化处理。去中心化知识管理是系统的核心模块,通过图数据库技术构建知识实体间的关联关系,支持知识的动态添加、更新和关系推理,实现知识的网状分布和智能关联。试题库管理和试题管理模块基于知识图谱自动生成测试题目,根据知识点的关联度和难度层次进行智能组卷,知识测试管理提供自适应学习路径和个性化推荐功能。考试管理模块支持在线考试和成绩分析,系统管理提供平台配置和数据维护功能,个人中心记录用户的学习轨迹和知识掌握情况。整个系统通过Python的自然语言处理库和图计算框架,实现了知识的语义理解和智能推荐,为用户提供了一个相对完整的知识学习和管理环境。

三.系统功能演示

2026毕业设计选题Python知识图谱系统去中心化架构设计与实现

四.系统界面展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

五.系统源码展示





from pyspark.sql import SparkSession
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
from django.utils.decorators import method_decorator
from django.views import View
import json
import networkx as nx
import numpy as np
from collections import defaultdict, deque
import hashlib
import random
@method_decorator(csrf_exempt, name='dispatch')
class DecentralizedKnowledgeView(View):
    def __init__(self):
        self.spark = SparkSession.builder.appName("DecentralizedKnowledgeGraph").config("spark.executor.memory", "2g").getOrCreate()
        self.knowledge_graph = nx.DiGraph()
        self.node_registry = {}
    def post(self, request):
        data = json.loads(request.body)
        action = data.get('action')
        if action == 'add_knowledge':
            knowledge_data = data.get('knowledge_data')
            entity_id = self.generate_entity_id(knowledge_data['name'])
            knowledge_node = {
                'id': entity_id,
                'name': knowledge_data['name'],
                'description': knowledge_data['description'],
                'category': knowledge_data['category'],
                'attributes': knowledge_data.get('attributes', {}),
                'node_hash': self.calculate_node_hash(knowledge_data),
                'peers': [],
                'confidence_score': 1.0
            }
            self.knowledge_graph.add_node(entity_id, **knowledge_node)
            self.node_registry[entity_id] = knowledge_node
            related_entities = data.get('related_entities', [])
            for related in related_entities:
                related_id = related['entity_id']
                relationship = related['relationship']
                weight = related.get('weight', 0.5)
                if related_id in self.node_registry:
                    self.knowledge_graph.add_edge(entity_id, related_id, relationship=relationship, weight=weight)
                    self.update_peer_connections(entity_id, related_id)
            distributed_nodes = self.distribute_knowledge_to_peers(knowledge_node)
            result = {
                'status': 'success',
                'entity_id': entity_id,
                'distributed_nodes': len(distributed_nodes),
                'knowledge_integrity': self.verify_knowledge_integrity(entity_id)
            }
            return JsonResponse(result)
        elif action == 'query_knowledge':
            query_terms = data.get('query_terms', [])
            search_results = self.decentralized_knowledge_search(query_terms)
            return JsonResponse({'status': 'success', 'results': search_results})
@method_decorator(csrf_exempt, name='dispatch')
class KnowledgeTestView(View):
    def __init__(self):
        self.spark = SparkSession.builder.appName("KnowledgeTestSystem").config("spark.executor.memory", "2g").getOrCreate()
    def post(self, request):
        data = json.loads(request.body)
        action = data.get('action')
        if action == 'generate_adaptive_test':
            user_id = data.get('user_id')
            knowledge_domain = data.get('knowledge_domain')
            difficulty_level = data.get('difficulty_level', 'medium')
            user_profile = self.get_user_knowledge_profile(user_id)
            knowledge_graph = self.load_knowledge_graph(knowledge_domain)
            weak_knowledge_points = self.identify_weak_knowledge_points(user_profile, knowledge_graph)
            test_questions = []
            for weak_point in weak_knowledge_points[:10]:
                related_concepts = list(knowledge_graph.neighbors(weak_point))
                question_type = self.determine_question_type(weak_point, related_concepts)
                if question_type == 'multiple_choice':
                    correct_answer = knowledge_graph.nodes[weak_point]['name']
                    distractors = self.generate_distractors(weak_point, related_concepts, knowledge_graph)
                    options = [correct_answer] + distractors[:3]
                    random.shuffle(options)
                    correct_index = options.index(correct_answer)
                elif question_type == 'relationship':
                    source_concept = knowledge_graph.nodes[weak_point]['name']
                    target_concepts = [knowledge_graph.nodes[neighbor]['name'] for neighbor in related_concepts]
                    correct_answer = target_concepts[0] if target_concepts else "无关联概念"
                    options = target_concepts[:4] if len(target_concepts) >= 4 else target_concepts + ["选项A", "选项B"][:4-len(target_concepts)]
                    random.shuffle(options)
                    correct_index = options.index(correct_answer)
                question = {
                    'question_id': f"Q_{len(test_questions)+1}",
                    'knowledge_point': weak_point,
                    'question_text': self.generate_question_text(question_type, weak_point, knowledge_graph),
                    'options': options,
                    'correct_answer': correct_index,
                    'difficulty': self.calculate_question_difficulty(weak_point, user_profile),
                    'explanation': knowledge_graph.nodes[weak_point]['description']
                }
                test_questions.append(question)
            test_session = {
                'test_id': f"TEST_{user_id}_{hash(str(test_questions))}",
                'user_id': user_id,
                'questions': test_questions,
                'adaptive_parameters': {
                    'initial_difficulty': difficulty_level,
                    'adjustment_factor': 0.1,
                    'knowledge_weights': {kp: user_profile.get(kp, 0.5) for kp in weak_knowledge_points}
                }
            }
            return JsonResponse({'status': 'success', 'test_session': test_session})
        elif action == 'evaluate_answer':
            test_id = data.get('test_id')
            question_id = data.get('question_id')
            user_answer = data.get('user_answer')
            evaluation_result = self.evaluate_user_answer(test_id, question_id, user_answer)
            return JsonResponse({'status': 'success', 'evaluation': evaluation_result})
@method_decorator(csrf_exempt, name='dispatch')
class QuestionManagementView(View):
    def __init__(self):
        self.spark = SparkSession.builder.appName("QuestionManagement").config("spark.executor.memory", "2g").getOrCreate()
    def post(self, request):
        data = json.loads(request.body)
        action = data.get('action')
        if action == 'intelligent_question_generation':
            knowledge_graph_data = data.get('knowledge_graph')
            target_concepts = data.get('target_concepts', [])
            question_types = data.get('question_types', ['multiple_choice', 'true_false', 'short_answer'])
            difficulty_distribution = data.get('difficulty_distribution', {'easy': 0.3, 'medium': 0.5, 'hard': 0.2})
            graph = nx.DiGraph()
            for node in knowledge_graph_data['nodes']:
                graph.add_node(node['id'], **node)
            for edge in knowledge_graph_data['edges']:
                graph.add_edge(edge['source'], edge['target'], **edge)
            generated_questions = []
            for concept_id in target_concepts:
                if concept_id not in graph.nodes:
                    continue
                concept_info = graph.nodes[concept_id]
                neighbors = list(graph.neighbors(concept_id))
                predecessors = list(graph.predecessors(concept_id))
                for question_type in question_types:
                    difficulty = self.select_difficulty_based_on_distribution(difficulty_distribution)
                    if question_type == 'multiple_choice':
                        question_text = f"关于{concept_info['name']}的描述,哪个是正确的?"
                        correct_option = concept_info['description']
                        wrong_options = []
                        for neighbor_id in neighbors[:3]:
                            neighbor_desc = graph.nodes[neighbor_id]['description']
                            modified_desc = self.modify_description_for_distractor(neighbor_desc, concept_info['name'])
                            wrong_options.append(modified_desc)
                        options = [correct_option] + wrong_options
                        random.shuffle(options)
                        correct_answer = options.index(correct_option)
                    elif question_type == 'relationship':
                        if neighbors:
                            related_concept = graph.nodes[neighbors[0]]
                            question_text = f"{concept_info['name']}与以下哪个概念关系最密切?"
                            correct_option = related_concept['name']
                            wrong_options = [graph.nodes[nid]['name'] for nid in random.sample(list(graph.nodes), 3) if nid != concept_id and nid != neighbors[0]]
                            options = [correct_option] + wrong_options
                            random.shuffle(options)
                            correct_answer = options.index(correct_option)
                        else:
                            continue
                    elif question_type == 'comprehension':
                        question_text = f"请解释{concept_info['name']}的主要特点和应用场景。"
                        reference_answer = f"{concept_info['description']}。主要应用于相关领域的具体场景中。"
                        options = []
                        correct_answer = -1
                    question_obj = {
                        'question_id': f"AUTO_{len(generated_questions)+1}",
                        'knowledge_point': concept_id,
                        'question_type': question_type,
                        'question_text': question_text,
                        'options': options,
                        'correct_answer': correct_answer,
                        'difficulty': difficulty,
                        'explanation': concept_info.get('detailed_explanation', concept_info['description']),
                        'tags': concept_info.get('tags', []),
                        'generation_method': 'graph_based_auto'
                    }
                    generated_questions.append(question_obj)
            question_quality_scores = []
            for question in generated_questions:
                quality_score = self.evaluate_question_quality(question, graph)
                question_quality_scores.append(quality_score)
                question['quality_score'] = quality_score
            high_quality_questions = [q for q in generated_questions if q['quality_score'] > 0.7]
            return JsonResponse({
                'status': 'success',
                'generated_questions': high_quality_questions,
                'total_generated': len(generated_questions),
                'high_quality_count': len(high_quality_questions),
                'average_quality': np.mean(question_quality_scores)
            })
    def generate_entity_id(self, name):
        return hashlib.md5(name.encode()).hexdigest()[:12]
    def calculate_node_hash(self, knowledge_data):
        content = f"{knowledge_data['name']}{knowledge_data['description']}{knowledge_data['category']}"
        return hashlib.sha256(content.encode()).hexdigest()
    def distribute_knowledge_to_peers(self, knowledge_node):
        available_peers = list(self.node_registry.keys())
        selected_peers = random.sample(available_peers, min(3, len(available_peers)))
        for peer_id in selected_peers:
            self.node_registry[peer_id]['peers'].append(knowledge_node['id'])
        return selected_peers
    def update_peer_connections(self, node1, node2):
        if node1 in self.node_registry and node2 in self.node_registry:
            if node2 not in self.node_registry[node1]['peers']:
                self.node_registry[node1]['peers'].append(node2)
            if node1 not in self.node_registry[node2]['peers']:
                self.node_registry[node2]['peers'].append(node1)
    def verify_knowledge_integrity(self, entity_id):
        if entity_id not in self.node_registry:
            return False
        node = self.node_registry[entity_id]
        peer_count = len(node['peers'])
        expected_hash = node['node_hash']
        return peer_count >= 2 and len(expected_hash) == 64
    def decentralized_knowledge_search(self, query_terms):
        search_results = []
        for entity_id, node in self.node_registry.items():
            relevance_score = 0
            for term in query_terms:
                if term.lower() in node['name'].lower():
                    relevance_score += 0.8
                if term.lower() in node['description'].lower():
                    relevance_score += 0.5
                if term.lower() in node['category'].lower():
                    relevance_score += 0.3
            if relevance_score > 0:
                search_results.append({
                    'entity_id': entity_id,
                    'name': node['name'],
                    'description': node['description'],
                    'relevance_score': relevance_score,
                    'peer_nodes': len(node['peers'])
                })
        return sorted(search_results, key=lambda x: x['relevance_score'], reverse=True)[:10]
    def get_user_knowledge_profile(self, user_id):
        return {'concept_1': 0.3, 'concept_2': 0.7, 'concept_3': 0.4}
    def load_knowledge_graph(self, domain):
        graph = nx.DiGraph()
        sample_nodes = [
            {'id': 'node_1', 'name': '基础概念', 'description': '领域基础知识'},
            {'id': 'node_2', 'name': '进阶理论', 'description': '高级理论知识'},
            {'id': 'node_3', 'name': '实践应用', 'description': '实际应用场景'}
        ]
        for node in sample_nodes:
            graph.add_node(node['id'], **node)
        return graph
    def identify_weak_knowledge_points(self, user_profile, knowledge_graph):
        weak_points = []
        for node_id in knowledge_graph.nodes:
            if user_profile.get(node_id, 0.5) < 0.6:
                weak_points.append(node_id)
        return weak_points
    def determine_question_type(self, knowledge_point, related_concepts):
        return random.choice(['multiple_choice', 'relationship'])
    def generate_distractors(self, target_concept, related_concepts, graph):
        distractors = []
        for concept in related_concepts:
            if concept in graph.nodes:
                distractors.append(graph.nodes[concept]['name'])
        return distractors
    def generate_question_text(self, question_type, knowledge_point, graph):
        concept_name = graph.nodes[knowledge_point]['name']
        if question_type == 'multiple_choice':
            return f"关于{concept_name},以下哪个描述是正确的?"
        elif question_type == 'relationship':
            return f"{concept_name}与以下哪个概念关系最密切?"
        return f"请说明{concept_name}的主要特征。"
    def calculate_question_difficulty(self, knowledge_point, user_profile):
        user_mastery = user_profile.get(knowledge_point, 0.5)
        if user_mastery < 0.3:
            return 'easy'
        elif user_mastery < 0.7:
            return 'medium'
        return 'hard'
    def evaluate_user_answer(self, test_id, question_id, user_answer):
        return {'correct': random.choice([True, False]), 'score': random.uniform(0.6, 1.0)}
    def select_difficulty_based_on_distribution(self, distribution):
        rand_val = random.random()
        cumulative = 0
        for difficulty, prob in distribution.items():
            cumulative += prob
            if rand_val <= cumulative:
                return difficulty
        return 'medium'
    def modify_description_for_distractor(self, original_desc, target_concept):
        return original_desc.replace('重要', '次要').replace('核心', '边缘')
    def evaluate_question_quality(self, question, graph):
        base_score = 0.5
        if len(question['question_text']) > 10:
            base_score += 0.2
        if len(question['options']) >= 3:
            base_score += 0.2
        if question['explanation']:
            base_score += 0.1
        return min(base_score, 1.0)

六.系统文档展示

在这里插入图片描述

结束

💕💕文末获取源码联系 计算机程序员小杨