💖💖作者:计算机毕业设计小明哥
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
💕💕文末获取源码
大数据健康可视化系统-系统功能
《基于大数据的健康与生活方式数据可视化分析系统》是一套运用Hadoop分布式存储和Spark大数据处理技术构建的综合性健康数据分析平台,该系统通过HDFS分布式文件系统存储海量印度健康与生活方式数据,利用Spark SQL进行高效的数据清洗、转换和计算处理,结合Pandas和NumPy进行深度数据分析,最终通过Vue前端框架配合ElementUI组件库和Echarts可视化图表库呈现丰富的数据洞察结果。系统采用Python+Django或Java+Spring Boot双技术栈架构设计,后端通过MySQL数据库进行结构化数据存储,前端运用HTML、CSS、JavaScript和jQuery技术实现交互式用户界面。在功能层面,系统从五个核心维度对印度居民健康数据进行深入挖掘:首先构建居民基础画像与生活方式概览,包括年龄结构、性别城乡分布、吸烟饮酒习惯、饮食结构和体力活动水平统计;其次进行城乡生活方式差异化对比,分析医疗偏好、工作压力、饮食结构和风险行为的地域差异;第三维度探究工作压力与健康风险行为的关联性,揭示压力对吸烟、饮酒和体力活动的影响机制;第四维度从年龄视角分析不同人生阶段的健康观念变迁和生活方式演变趋势;最后通过健康生活方式综合评估建立量化评分体系,实现多维度交叉对比分析,为公共卫生政策制定和个人健康管理提供科学的数据支撑和决策依据。
大数据健康可视化系统-技术选型
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL
大数据健康可视化系统-背景意义
选题背景 随着全球数字化进程的不断推进,健康医疗数据呈现爆炸式增长态势,根据IBM统计显示,全球医疗健康数据每年以约48%的速度递增,预计到2025年将达到36亿TB的规模。印度作为全球第二人口大国,拥有超过14亿人口,其健康与生活方式数据蕴含着巨大的研究价值和社会意义。世界卫生组织发布的《2023年全球健康报告》指出,印度地区因不良生活习惯导致的慢性疾病发病率正以每年12.8%的速度增长,城乡健康差异、工作压力与健康行为关联等问题日益凸显。然而,面对如此庞大且复杂的健康数据,传统的统计分析方法已经难以胜任深层次的数据挖掘和模式识别任务。与此同时,大数据技术在医疗健康领域的应用正逐步成熟,Hadoop、Spark等分布式计算框架为处理海量健康数据提供了技术保障,数据可视化技术的发展也让复杂的健康数据分析结果能够以更加直观易懂的方式呈现给决策者和普通民众,这为构建基于大数据的健康生活方式分析系统提供了良好的技术基础和现实需求。 选题意义 本系统的构建具有显著的理论价值和实际应用价值,能够为多个层面的健康管理和政策制定提供科学依据。从公共卫生角度来看,该系统通过对印度大规模人群健康数据的深度挖掘,能够识别出不同地区、不同人群的健康风险特征和生活方式模式,为政府部门制定精准化的公共卫生干预政策提供数据支撑,帮助优化医疗资源配置,提升整体人群健康水平。对于医疗机构而言,系统揭示的城乡医疗偏好差异、年龄段健康观念变迁等洞察,可以指导医疗服务模式的调整和医疗产品的开发方向。个人用户层面,系统构建的健康生活方式评分体系和多维度对比分析功能,让普通民众能够直观了解自身健康状况在同类人群中的位置,从而制定更加科学合理的健康改善计划。在技术创新层面,本系统探索了大数据技术在健康领域的深度应用,为相关研究提供了完整的技术方案和实践经验,推动了数据可视化、分布式计算等技术在医疗健康领域的进一步发展和普及应用。
大数据健康可视化系统-演示视频
大数据健康可视化系统-演示图片
大数据健康可视化系统-代码展示
def analyze_urban_rural_lifestyle_differences(request):
urban_data = HealthData.objects.filter(urban_rural='Urban')
rural_data = HealthData.objects.filter(urban_rural='Rural')
urban_medicine_modern = urban_data.filter(preferred_medicine='Modern Medicine').count()
urban_medicine_ayurveda = urban_data.filter(preferred_medicine='Ayurveda').count()
rural_medicine_modern = rural_data.filter(preferred_medicine='Modern Medicine').count()
rural_medicine_ayurveda = rural_data.filter(preferred_medicine='Ayurveda').count()
urban_high_stress = urban_data.filter(work_stress='High').count()
urban_medium_stress = urban_data.filter(work_stress='Medium').count()
urban_low_stress = urban_data.filter(work_stress='Low').count()
rural_high_stress = rural_data.filter(work_stress='High').count()
rural_medium_stress = rural_data.filter(work_stress='Medium').count()
rural_low_stress = rural_data.filter(work_stress='Low').count()
urban_vegetarian = urban_data.filter(diet_type='Vegetarian').count()
urban_non_vegetarian = urban_data.filter(diet_type='Non-Vegetarian').count()
rural_vegetarian = rural_data.filter(diet_type='Vegetarian').count()
rural_non_vegetarian = rural_data.filter(diet_type='Non-Vegetarian').count()
urban_smoking_yes = urban_data.filter(smoking_status='Yes').count()
urban_smoking_no = urban_data.filter(smoking_status='No').count()
rural_smoking_yes = rural_data.filter(smoking_status='Yes').count()
rural_smoking_no = rural_data.filter(smoking_status='No').count()
urban_alcohol_yes = urban_data.filter(alcohol_consumption='Yes').count()
urban_alcohol_no = urban_data.filter(alcohol_consumption='No').count()
rural_alcohol_yes = rural_data.filter(alcohol_consumption='Yes').count()
rural_alcohol_no = rural_data.filter(alcohol_consumption='No').count()
comparison_result = {
'medicine_preference': {'urban_modern': urban_medicine_modern, 'urban_ayurveda': urban_medicine_ayurveda, 'rural_modern': rural_medicine_modern, 'rural_ayurveda': rural_medicine_ayurveda},
'stress_levels': {'urban_high': urban_high_stress, 'urban_medium': urban_medium_stress, 'urban_low': urban_low_stress, 'rural_high': rural_high_stress, 'rural_medium': rural_medium_stress, 'rural_low': rural_low_stress},
'diet_structure': {'urban_veg': urban_vegetarian, 'urban_non_veg': urban_non_vegetarian, 'rural_veg': rural_vegetarian, 'rural_non_veg': rural_non_vegetarian},
'risk_behaviors': {'urban_smoking': urban_smoking_yes, 'urban_no_smoking': urban_smoking_no, 'rural_smoking': rural_smoking_yes, 'rural_no_smoking': rural_smoking_no, 'urban_alcohol': urban_alcohol_yes, 'urban_no_alcohol': urban_alcohol_no, 'rural_alcohol': rural_alcohol_yes, 'rural_no_alcohol': rural_alcohol_no}
}
return JsonResponse(comparison_result)
def analyze_stress_health_behavior_correlation(request):
high_stress_data = HealthData.objects.filter(work_stress='High')
medium_stress_data = HealthData.objects.filter(work_stress='Medium')
low_stress_data = HealthData.objects.filter(work_stress='Low')
high_stress_smoking = high_stress_data.filter(smoking_status='Yes').count()
high_stress_total = high_stress_data.count()
high_stress_smoking_rate = (high_stress_smoking / high_stress_total * 100) if high_stress_total > 0 else 0
medium_stress_smoking = medium_stress_data.filter(smoking_status='Yes').count()
medium_stress_total = medium_stress_data.count()
medium_stress_smoking_rate = (medium_stress_smoking / medium_stress_total * 100) if medium_stress_total > 0 else 0
low_stress_smoking = low_stress_data.filter(smoking_status='Yes').count()
low_stress_total = low_stress_data.count()
low_stress_smoking_rate = (low_stress_smoking / low_stress_total * 100) if low_stress_total > 0 else 0
high_stress_alcohol = high_stress_data.filter(alcohol_consumption='Yes').count()
high_stress_alcohol_rate = (high_stress_alcohol / high_stress_total * 100) if high_stress_total > 0 else 0
medium_stress_alcohol = medium_stress_data.filter(alcohol_consumption='Yes').count()
medium_stress_alcohol_rate = (medium_stress_alcohol / medium_stress_total * 100) if medium_stress_total > 0 else 0
low_stress_alcohol = low_stress_data.filter(alcohol_consumption='Yes').count()
low_stress_alcohol_rate = (low_stress_alcohol / low_stress_total * 100) if low_stress_total > 0 else 0
high_stress_low_activity = high_stress_data.filter(physical_activity='Low').count()
high_stress_low_activity_rate = (high_stress_low_activity / high_stress_total * 100) if high_stress_total > 0 else 0
medium_stress_low_activity = medium_stress_data.filter(physical_activity='Low').count()
medium_stress_low_activity_rate = (medium_stress_low_activity / medium_stress_total * 100) if medium_stress_total > 0 else 0
low_stress_low_activity = low_stress_data.filter(physical_activity='Low').count()
low_stress_low_activity_rate = (low_stress_low_activity / low_stress_total * 100) if low_stress_total > 0 else 0
male_high_stress = HealthData.objects.filter(gender='Male', work_stress='High').count()
male_total = HealthData.objects.filter(gender='Male').count()
male_high_stress_rate = (male_high_stress / male_total * 100) if male_total > 0 else 0
female_high_stress = HealthData.objects.filter(gender='Female', work_stress='High').count()
female_total = HealthData.objects.filter(gender='Female').count()
female_high_stress_rate = (female_high_stress / female_total * 100) if female_total > 0 else 0
correlation_result = {
'stress_smoking_correlation': {'high_stress_rate': high_stress_smoking_rate, 'medium_stress_rate': medium_stress_smoking_rate, 'low_stress_rate': low_stress_smoking_rate},
'stress_alcohol_correlation': {'high_stress_rate': high_stress_alcohol_rate, 'medium_stress_rate': medium_stress_alcohol_rate, 'low_stress_rate': low_stress_alcohol_rate},
'stress_activity_correlation': {'high_stress_low_activity': high_stress_low_activity_rate, 'medium_stress_low_activity': medium_stress_low_activity_rate, 'low_stress_low_activity': low_stress_low_activity_rate},
'gender_stress_difference': {'male_high_stress_rate': male_high_stress_rate, 'female_high_stress_rate': female_high_stress_rate}
}
return JsonResponse(correlation_result)
def calculate_comprehensive_health_score(request):
all_users = HealthData.objects.all()
score_distribution = {'0-20': 0, '21-40': 0, '41-60': 0, '61-80': 0, '81-100': 0}
user_scores = []
for user in all_users:
health_score = 0
if user.smoking_status == 'No':
health_score += 25
if user.alcohol_consumption == 'No':
health_score += 25
if user.physical_activity == 'High':
health_score += 30
elif user.physical_activity == 'Medium':
health_score += 15
if user.diet_type == 'Vegetarian':
health_score += 10
if user.work_stress == 'Low':
health_score += 10
elif user.work_stress == 'Medium':
health_score += 5
user_scores.append({'user_id': user.id, 'score': health_score, 'urban_rural': user.urban_rural, 'preferred_medicine': user.preferred_medicine, 'work_stress': user.work_stress})
if health_score <= 20:
score_distribution['0-20'] += 1
elif health_score <= 40:
score_distribution['21-40'] += 1
elif health_score <= 60:
score_distribution['41-60'] += 1
elif health_score <= 80:
score_distribution['61-80'] += 1
else:
score_distribution['81-100'] += 1
high_score_users = [user for user in user_scores if user['score'] >= 70]
low_score_users = [user for user in user_scores if user['score'] <= 30]
high_score_modern_medicine = len([user for user in high_score_users if user['preferred_medicine'] == 'Modern Medicine'])
high_score_ayurveda = len([user for user in high_score_users if user['preferred_medicine'] == 'Ayurveda'])
low_score_modern_medicine = len([user for user in low_score_users if user['preferred_medicine'] == 'Modern Medicine'])
low_score_ayurveda = len([user for user in low_score_users if user['preferred_medicine'] == 'Ayurveda'])
high_stress_avg_score = sum([user['score'] for user in user_scores if user['work_stress'] == 'High']) / len([user for user in user_scores if user['work_stress'] == 'High']) if len([user for user in user_scores if user['work_stress'] == 'High']) > 0 else 0
medium_stress_avg_score = sum([user['score'] for user in user_scores if user['work_stress'] == 'Medium']) / len([user for user in user_scores if user['work_stress'] == 'Medium']) if len([user for user in user_scores if user['work_stress'] == 'Medium']) > 0 else 0
low_stress_avg_score = sum([user['score'] for user in user_scores if user['work_stress'] == 'Low']) / len([user for user in user_scores if user['work_stress'] == 'Low']) if len([user for user in user_scores if user['work_stress'] == 'Low']) > 0 else 0
urban_avg_score = sum([user['score'] for user in user_scores if user['urban_rural'] == 'Urban']) / len([user for user in user_scores if user['urban_rural'] == 'Urban']) if len([user for user in user_scores if user['urban_rural'] == 'Urban']) > 0 else 0
rural_avg_score = sum([user['score'] for user in user_scores if user['urban_rural'] == 'Rural']) / len([user for user in user_scores if user['urban_rural'] == 'Rural']) if len([user for user in user_scores if user['urban_rural'] == 'Rural']) > 0 else 0
comprehensive_result = {
'score_distribution': score_distribution,
'medicine_preference_by_health': {'high_score_modern': high_score_modern_medicine, 'high_score_ayurveda': high_score_ayurveda, 'low_score_modern': low_score_modern_medicine, 'low_score_ayurveda': low_score_ayurveda},
'stress_health_relationship': {'high_stress_avg': round(high_stress_avg_score, 2), 'medium_stress_avg': round(medium_stress_avg_score, 2), 'low_stress_avg': round(low_stress_avg_score, 2)},
'urban_rural_health_comparison': {'urban_avg_score': round(urban_avg_score, 2), 'rural_avg_score': round(rural_avg_score, 2)}
}
return JsonResponse(comprehensive_result)
大数据健康可视化系统-结语
💕💕
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流,也可以在主页联系我。