同样是做计算机毕设,为什么选择Hadoop+Spark婚姻数据分析系统的都不慌? 毕业设计/选题推荐/深度学习/数据分析/机器学习/数据挖掘/随机森林

47 阅读9分钟

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 | SpringBoot/SSM Python实战项目 | Django 微信小程序/安卓实战项目 大数据实战项目 ⚡⚡获取源码主页-->计算机编程指导师

婚姻状况数据分析与可视化系统-简介

基于Hadoop+Spark的我国婚姻状况数据分析与可视化系统是一个专门针对我国2000-2020年婚姻状况数据进行深度挖掘和可视化展示的大数据分析平台。该系统充分利用Hadoop分布式文件系统(HDFS)进行海量婚姻统计数据的存储管理,结合Spark大数据处理框架实现高效的数据清洗、转换和分析计算。系统采用Django后端框架构建RESTful API接口,前端使用Vue+ElementUI+ECharts技术栈开发响应式用户界面,通过MySQL数据库存储分析结果和用户配置信息。核心功能涵盖婚姻状况总体结构与变迁分析、基于年龄维度的婚姻状况深度剖析、基于性别维度的婚姻状况差异化研究以及婚姻模式变迁的深度挖掘四大模块,共计18个具体分析维度。系统运用Spark SQL进行复杂统计查询,结合Pandas和NumPy进行数据处理,并集成Apriori关联规则挖掘算法和K-Means聚类算法,为用户提供多维度、多层次的婚姻数据分析结果和直观的图表可视化展示。

婚姻状况数据分析与可视化系统-技术

开发语言:Python或Java 大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

婚姻状况数据分析与可视化系统-背景

随着社会经济的快速发展和人们价值观念的转变,我国的婚姻模式正在经历深刻的变化。从传统的早婚早育模式向现代的晚婚少育模式转变,离婚率持续上升,单身人群规模不断扩大,这些现象背后反映出深层次的社会结构调整和文化观念变迁。婚姻作为社会的基本组织单位,其状况变化直接关系到人口结构、家庭稳定、社会保障等多个方面的发展。传统的婚姻状况分析主要依赖统计年鉴和抽样调查,数据处理方式相对简单,难以深入挖掘数据背后的复杂关联和变化规律。面对海量的人口普查数据和社会统计数据,传统的数据分析方法已经无法满足深度分析的需求,迫切需要运用大数据技术手段来处理和分析这些复杂的社会现象数据,为相关政策制定和社会研究提供更加精准的数据支撑。

本课题的研究具有重要的理论价值和实践意义。从技术角度来看,该系统将大数据处理技术应用于社会统计数据分析领域,探索了Hadoop+Spark技术栈在人口统计数据处理中的具体应用方案,为类似的社会数据分析系统提供了技术参考和实现模板。从学术研究角度,系统通过多维度的数据挖掘和可视化分析,能够更加清晰地揭示我国婚姻状况的变迁规律和内在机制,为人口学、社会学等相关学科的研究提供数据支撑和分析工具。从社会实践角度,系统的分析结果可以为政府部门制定人口政策、婚姻家庭相关法规提供数据参考,帮助相关机构更好地了解社会婚姻状况的发展趋势。同时,该系统也为高校相关专业的教学和科研活动提供了实用的案例平台,学生可以通过系统的使用和开发过程,加深对大数据技术在社会科学研究中应用的理解和掌握。当然,作为一个毕业设计项目,该系统在功能完善程度和数据覆盖范围上还有一定局限性,但依然能够为相关领域的后续研究和系统开发提供有益的探索和经验积累。

婚姻状况数据分析与可视化系统-视频展示

www.bilibili.com/video/BV1bF…

婚姻状况数据分析与可视化系统-图片展示

1 2026计算机毕设选题推荐:基于Hadoop+Spark的婚姻状况数据分析与可视化系统指南.png

QQ20250905-160920.png

QQ20250905-162334.png

婚姻模式变迁分析.png

婚姻年龄特征分析.png

婚姻数据挖掘分析.png

婚姻性别差异分析.png

婚姻状况信息管理.png

婚姻状况总体分析.png

数据大屏上.png

数据大屏下.png

婚姻状况数据分析与可视化系统-代码展示

from pyspark.sql.functions import col, sum as spark_sum, count, desc, asc, when, round as spark_round
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans
import pandas as pd
import numpy as np
from collections import defaultdict
import itertools

spark = SparkSession.builder.appName("MarriageDataAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

def analyze_marriage_structure_changes():
    marriage_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/marriage_data/marriage_records.csv")
    yearly_stats = marriage_df.groupBy("record_year", "state").agg(spark_sum("pop").alias("population"))
    yearly_total = yearly_stats.groupBy("record_year").agg(spark_sum("population").alias("total_pop"))
    marriage_ratios = yearly_stats.join(yearly_total, "record_year")
    marriage_ratios = marriage_ratios.withColumn("ratio", spark_round((col("population") / col("total_pop")) * 100, 2))
    marriage_ratios = marriage_ratios.select("record_year", "state", "ratio").orderBy("record_year", "state")
    marriage_trends = marriage_ratios.groupBy("state").agg(
        spark_round((col("ratio").cast("double") - col("ratio").cast("double")) / col("ratio").cast("double") * 100, 2).alias("change_rate")
    )
    gender_balance = marriage_df.groupBy("record_year", "state", "gender").agg(spark_sum("pop").alias("gender_pop"))
    male_stats = gender_balance.filter(col("gender") == "男").select("record_year", "state", col("gender_pop").alias("male_pop"))
    female_stats = gender_balance.filter(col("gender") == "女").select("record_year", "state", col("gender_pop").alias("female_pop"))
    gender_ratio = male_stats.join(female_stats, ["record_year", "state"])
    gender_ratio = gender_ratio.withColumn("gender_ratio", spark_round(col("male_pop") / col("female_pop"), 3))
    marriage_rate_data = marriage_df.filter(col("state") == "有配偶").groupBy("record_year").agg(spark_sum("pop").alias("married_pop"))
    total_adult_pop = marriage_df.filter(col("age") >= 15).groupBy("record_year").agg(spark_sum("pop").alias("adult_pop"))
    marriage_rates = marriage_rate_data.join(total_adult_pop, "record_year")
    marriage_rates = marriage_rates.withColumn("crude_marriage_rate", spark_round((col("married_pop") / col("adult_pop")) * 1000, 2))
    divorce_rate_data = marriage_df.filter(col("state") == "离婚").groupBy("record_year").agg(spark_sum("pop").alias("divorced_pop"))
    divorce_rates = divorce_rate_data.join(total_adult_pop, "record_year")
    divorce_rates = divorce_rates.withColumn("crude_divorce_rate", spark_round((col("divorced_pop") / col("adult_pop")) * 1000, 2))
    final_results = marriage_rates.join(divorce_rates.select("record_year", "crude_divorce_rate"), "record_year")
    return final_results.collect()

def analyze_age_based_marriage_patterns():
    marriage_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/marriage_data/marriage_records.csv")
    marriage_df = marriage_df.withColumn("age_group", 
        when(col("age") < 25, "青年(15-24)")
        .when((col("age") >= 25) & (col("age") < 45), "中年(25-44)")
        .when((col("age") >= 45) & (col("age") < 65), "中老年(45-64)")
        .otherwise("老年(65+)")
    )
    age_marriage_stats = marriage_df.groupBy("record_year", "age_group", "state").agg(spark_sum("pop").alias("age_state_pop"))
    age_totals = marriage_df.groupBy("record_year", "age_group").agg(spark_sum("pop").alias("age_total_pop"))
    age_marriage_ratios = age_marriage_stats.join(age_totals, ["record_year", "age_group"])
    age_marriage_ratios = age_marriage_ratios.withColumn("age_marriage_ratio", 
        spark_round((col("age_state_pop") / col("age_total_pop")) * 100, 2)
    )
    first_marriage_age = marriage_df.filter(col("state") == "有配偶").filter((col("age") >= 15) & (col("age") <= 35))
    marriage_age_stats = first_marriage_age.groupBy("record_year", "age").agg(spark_sum("pop").alias("married_by_age"))
    year_marriage_totals = marriage_age_stats.groupBy("record_year").agg(spark_sum("married_by_age").alias("year_total"))
    marriage_age_ratios = marriage_age_stats.join(year_marriage_totals, "record_year")
    marriage_age_ratios = marriage_age_ratios.withColumn("marriage_weight", col("married_by_age") / col("year_total"))
    marriage_age_ratios = marriage_age_ratios.withColumn("weighted_age", col("age") * col("marriage_weight"))
    average_marriage_age = marriage_age_ratios.groupBy("record_year").agg(spark_sum("weighted_age").alias("avg_marriage_age"))
    divorce_by_age = marriage_df.filter(col("state") == "离婚").groupBy("record_year", "age_group").agg(spark_sum("pop").alias("divorced_pop"))
    married_divorced_by_age = marriage_df.filter((col("state") == "有配偶") | (col("state") == "离婚")).groupBy("record_year", "age_group").agg(spark_sum("pop").alias("ever_married_pop"))
    divorce_rates_by_age = divorce_by_age.join(married_divorced_by_age, ["record_year", "age_group"])
    divorce_rates_by_age = divorce_rates_by_age.withColumn("divorce_rate", spark_round((col("divorced_pop") / col("ever_married_pop")) * 100, 2))
    youth_unmarried = marriage_df.filter((col("age") >= 15) & (col("age") <= 24)).groupBy("record_year", "state").agg(spark_sum("pop").alias("youth_state_pop"))
    youth_total = marriage_df.filter((col("age") >= 15) & (col("age") <= 24)).groupBy("record_year").agg(spark_sum("pop").alias("youth_total_pop"))
    youth_unmarried_ratio = youth_unmarried.filter(col("state") == "未婚").join(youth_total, "record_year")
    youth_unmarried_ratio = youth_unmarried_ratio.withColumn("youth_unmarried_rate", spark_round((col("youth_state_pop") / col("youth_total_pop")) * 100, 2))
    return {
        "age_marriage_patterns": age_marriage_ratios.collect(),
        "average_marriage_age": average_marriage_age.collect(),
        "divorce_by_age": divorce_rates_by_age.collect(),
        "youth_trends": youth_unmarried_ratio.collect()
    }

def perform_kmeans_clustering_analysis():
    marriage_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/marriage_data/marriage_records.csv")
    marriage_df = marriage_df.withColumn("age_group", 
        when(col("age") < 25, "青年")
        .when((col("age") >= 25) & (col("age") < 45), "中年")
        .when((col("age") >= 45) & (col("age") < 65), "中老年")
        .otherwise("老年")
    )
    clustering_features = marriage_df.groupBy("record_year", "gender", "age_group").pivot("state", ["未婚", "有配偶", "离婚", "丧偶"]).agg(spark_sum("pop")).fillna(0)
    feature_totals = clustering_features.withColumn("total_pop", 
        col("未婚") + col("有配偶") + col("离婚") + col("丧偶")
    )
    feature_ratios = feature_totals.withColumn("unmarried_ratio", col("未婚") / col("total_pop")) \
        .withColumn("married_ratio", col("有配偶") / col("total_pop")) \
        .withColumn("divorced_ratio", col("离婚") / col("total_pop")) \
        .withColumn("widowed_ratio", col("丧偶") / col("total_pop"))
    clustering_data = feature_ratios.select("record_year", "gender", "age_group", "unmarried_ratio", "married_ratio", "divorced_ratio", "widowed_ratio")
    assembler = VectorAssembler(inputCols=["unmarried_ratio", "married_ratio", "divorced_ratio", "widowed_ratio"], outputCol="features")
    feature_vectors = assembler.transform(clustering_data)
    kmeans = KMeans(k=4, seed=42, featuresCol="features", predictionCol="cluster")
    kmeans_model = kmeans.fit(feature_vectors)
    clustered_results = kmeans_model.transform(feature_vectors)
    cluster_centers = kmeans_model.clusterCenters()
    cluster_analysis = clustered_results.groupBy("cluster").agg(
        count("*").alias("group_count"),
        spark_round(col("unmarried_ratio").cast("double"), 3).alias("avg_unmarried"),
        spark_round(col("married_ratio").cast("double"), 3).alias("avg_married"),
        spark_round(col("divorced_ratio").cast("double"), 3).alias("avg_divorced"),
        spark_round(col("widowed_ratio").cast("double"), 3).alias("avg_widowed")
    )
    demographic_clusters = clustered_results.groupBy("cluster", "gender", "age_group").agg(count("*").alias("cluster_size")).orderBy("cluster", desc("cluster_size"))
    growth_rate_analysis = marriage_df.filter((col("record_year") == 2000) | (col("record_year") == 2020))
    start_year_data = growth_rate_analysis.filter(col("record_year") == 2000).groupBy("gender", "age_group", "state").agg(spark_sum("pop").alias("start_pop"))
    end_year_data = growth_rate_analysis.filter(col("record_year") == 2020).groupBy("gender", "age_group", "state").agg(spark_sum("pop").alias("end_pop"))
    growth_comparison = start_year_data.join(end_year_data, ["gender", "age_group", "state"])
    growth_comparison = growth_comparison.withColumn("growth_rate", spark_round(((col("end_pop") - col("start_pop")) / col("start_pop")) * 100, 2))
    fastest_growing_unmarried = growth_comparison.filter(col("state") == "未婚").orderBy(desc("growth_rate"))
    fastest_growing_divorced = growth_comparison.filter(col("state") == "离婚").orderBy(desc("growth_rate"))
    return {
        "cluster_results": clustered_results.collect(),
        "cluster_centers": cluster_centers,
        "cluster_summary": cluster_analysis.collect(),
        "demographic_distribution": demographic_clusters.collect(),
        "unmarried_growth": fastest_growing_unmarried.collect(),
        "divorce_growth": fastest_growing_divorced.collect()
    }

婚姻状况数据分析与可视化系统-结语

2026计算机毕设选题推荐:基于Hadoop+Spark的婚姻状况数据分析与可视化系统指南 毕业设计/选题推荐/深度学习/数据分析/机器学习/数据挖掘/随机森林

支持我记得一键三连,再点个关注,学习不迷路!如果遇到有什么技术问题,欢迎在评论区留言!感谢支持!

⚡⚡获取源码主页-->计算机编程指导师 ⚡⚡有技术问题或者获取源代码!欢迎在评论区一起交流! ⚡⚡大家点赞、收藏、关注、有问题都可留言评论交流! ⚡⚡有问题可以在主页上详细资料里↑↑联系我~~