🎓 作者:计算机毕设小月哥 | 软件开发专家
🖥️ 简介:8年计算机软件程序开发经验。精通Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等技术栈。
🛠️ 专业服务 🛠️
需求定制化开发
源码提供与讲解
技术文档撰写(指导计算机毕设选题【新颖+创新】、任务书、开题报告、文献综述、外文翻译等)
项目答辩演示PPT制作
🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝
👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!
🍅 ↓↓主页获取源码联系↓↓🍅
基于大数据的快手平台用户活跃度分析系统-功能介绍
基于大数据的快手平台用户活跃度分析系统是一个面向大学生群体用户行为研究的综合性数据分析平台,该系统充分运用Hadoop分布式存储架构和Spark大数据计算引擎,结合Python数据科学生态和Django Web开发框架,构建了完整的用户活跃度数据采集、存储、处理与可视化展示解决方案。系统通过对快手平台大学生用户的多维度行为数据进行深度挖掘,实现了整体用户活跃状况分析、用户画像维度分析、地理与学校维度分析以及用户行为模式深度挖掘等四大核心功能模块。平台采用Vue+ElementUI构建现代化前端界面,集成ECharts数据可视化组件,为用户提供直观的数据图表展示和交互式分析体验,通过Spark SQL高效处理海量用户行为数据,运用K-Means聚类算法实现用户智能分群,为快手平台的用户运营策略优化和市场推广决策提供科学的数据支撑。
基于大数据的快手平台用户活跃度分析系统-选题背景意义
选题背景 随着移动互联网技术的快速发展和智能终端设备的普及,短视频平台已成为当代大学生重要的娱乐社交载体,快手作为国内领先的短视频社交平台,在大学生群体中拥有庞大的用户基础。然而,面对激烈的市场竞争和用户需求的多样化变迁,平台运营方迫切需要深入了解不同用户群体的行为特征和活跃规律,特别是对于消费潜力较强的大学生用户群体。传统的用户分析方法往往基于简单的统计指标,难以挖掘出用户行为背后的深层规律和潜在价值,而大数据技术的成熟为解决这一问题提供了新的技术路径。通过构建专门针对快手平台大学生用户的活跃度分析系统,能够运用先进的大数据处理技术对用户行为数据进行多维度深度挖掘,从用户基本属性、地理分布、使用偏好等角度全面刻画用户画像。 选题意义 本课题的研究具有多方面的实际意义,虽然作为毕业设计项目在规模上相对有限,但仍能为相关领域提供一定的参考价值。从技术实践角度来看,该系统将大数据处理的理论知识与实际业务场景相结合,通过Hadoop和Spark等主流大数据技术的应用,为学习者提供了完整的大数据项目开发经验,有助于加深对分布式计算、数据挖掘算法等核心概念的理解。从业务应用角度而言,系统构建的用户活跃度分析模型能够为短视频平台的用户运营提供数据参考,特别是在用户分群、精准推送、内容推荐等方面可能产生一定的指导作用。从学术研究层面来说,本研究尝试将用户行为分析的传统方法与大数据技术相融合,探索了一种相对可行的用户活跃度评估框架,为后续相关研究提供了思路借鉴。同时,系统对大学生这一特定用户群体的深入分析,也为理解数字原住民的网络行为模式贡献了微薄的数据支撑。
基于大数据的快手平台用户活跃度分析系统-技术选型
大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL
基于大数据的快手平台用户活跃度分析系统-视频展示
基于大数据的快手平台用户活跃度分析系统-图片展示
基于大数据的快手平台用户活跃度分析系统-代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import VectorAssembler
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views import View
spark = SparkSession.builder.appName("KuaishouUserAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()
class UserActivityAnalysisView(View):
def calculate_overall_activity_analysis(self, request):
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/kuaishou_db").option("dbtable", "user_activity").option("user", "root").option("password", "password").load()
df.createOrReplaceTempView("user_activity")
activity_levels = spark.sql("""
SELECT
CASE
WHEN active_days >= 6 THEN '高活跃用户'
WHEN active_days >= 3 THEN '中活跃用户'
ELSE '低活跃用户'
END as activity_level,
SUM(student_count) as user_count
FROM user_activity
GROUP BY CASE
WHEN active_days >= 6 THEN '高活跃用户'
WHEN active_days >= 3 THEN '中活跃用户'
ELSE '低活跃用户'
END
""")
total_users = spark.sql("SELECT SUM(student_count) as total FROM user_activity").collect()[0]['total']
activity_distribution = activity_levels.withColumn("percentage", round(col("user_count") * 100.0 / total_users, 2))
basic_metrics = spark.sql("""
SELECT
SUM(student_count) as total_users,
COUNT(DISTINCT school) as total_schools,
COUNT(DISTINCT province) as total_provinces
FROM user_activity
""")
daily_active_users = spark.sql("SELECT SUM(active_days * student_count) / 7 as estimated_dau FROM user_activity").collect()[0]['estimated_dau']
avg_weekly_active = spark.sql("""
SELECT SUM(active_days * student_count) / SUM(student_count) as avg_active_days
FROM user_activity
""").collect()[0]['avg_active_days']
result_data = {
'activity_distribution': activity_distribution.toPandas().to_dict('records'),
'basic_metrics': basic_metrics.toPandas().to_dict('records')[0],
'daily_active_users': round(daily_active_users, 0),
'avg_weekly_active_days': round(avg_weekly_active, 2)
}
return JsonResponse(result_data)
def analyze_user_demographics(self, request):
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/kuaishou_db").option("dbtable", "user_activity").option("user", "root").option("password", "password").load()
df.createOrReplaceTempView("user_demographics")
gender_analysis = spark.sql("""
SELECT
gender,
SUM(active_days * student_count) / SUM(student_count) as avg_active_days,
SUM(student_count) as total_users,
SUM(CASE WHEN active_days >= 6 THEN student_count ELSE 0 END) * 100.0 / SUM(student_count) as high_active_percentage
FROM user_demographics
GROUP BY gender
""")
os_analysis = spark.sql("""
SELECT
operating_system,
SUM(active_days * student_count) / SUM(student_count) as avg_active_days,
SUM(student_count) as total_users,
RANK() OVER (ORDER BY SUM(active_days * student_count) / SUM(student_count) DESC) as activity_rank
FROM user_demographics
GROUP BY operating_system
""")
location_analysis = spark.sql("""
SELECT
is_remote_student,
SUM(active_days * student_count) / SUM(student_count) as avg_active_days,
SUM(student_count) as total_users,
STDDEV(active_days) as activity_variance
FROM user_demographics
GROUP BY is_remote_student
""")
cross_analysis = spark.sql("""
SELECT
gender,
operating_system,
SUM(active_days * student_count) / SUM(student_count) as avg_active_days,
SUM(student_count) as user_count
FROM user_demographics
GROUP BY gender, operating_system
ORDER BY avg_active_days DESC
""")
demographics_result = {
'gender_analysis': gender_analysis.toPandas().to_dict('records'),
'os_analysis': os_analysis.toPandas().to_dict('records'),
'location_analysis': location_analysis.toPandas().to_dict('records'),
'cross_analysis': cross_analysis.toPandas().to_dict('records')
}
return JsonResponse(demographics_result)
def perform_user_clustering_analysis(self, request):
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/kuaishou_db").option("dbtable", "user_activity").option("user", "root").option("password", "password").load()
feature_df = df.select("active_days", "student_count",
when(col("gender") == "男", 1).otherwise(0).alias("gender_encoded"),
when(col("operating_system") == "iOS", 1).when(col("operating_system") == "Android", 2).otherwise(3).alias("os_encoded"),
when(col("is_remote_student") == "是", 1).otherwise(0).alias("remote_encoded"))
assembler = VectorAssembler(inputCols=["active_days", "gender_encoded", "os_encoded", "remote_encoded"], outputCol="features")
feature_vector_df = assembler.transform(feature_df)
kmeans = KMeans(k=4, seed=42, featuresCol="features", predictionCol="cluster")
model = kmeans.fit(feature_vector_df)
clustered_df = model.transform(feature_vector_df)
clustered_df.createOrReplaceTempView("clustered_users")
cluster_summary = spark.sql("""
SELECT
cluster,
COUNT(*) as cluster_size,
AVG(active_days) as avg_activity,
AVG(student_count) as avg_user_count,
AVG(gender_encoded) as gender_ratio,
AVG(os_encoded) as os_preference,
AVG(remote_encoded) as remote_ratio
FROM clustered_users
GROUP BY cluster
ORDER BY avg_activity DESC
""")
cluster_labels = []
for row in cluster_summary.collect():
if row['avg_activity'] >= 5.5:
label = "高频忠实用户"
elif row['avg_activity'] >= 3.5:
label = "中频稳定用户"
elif row['avg_activity'] >= 1.5:
label = "低频边缘用户"
else:
label = "潜在流失用户"
cluster_labels.append({
'cluster': row['cluster'],
'label': label,
'characteristics': f"平均活跃{row['avg_activity']:.1f}天,用户规模{row['cluster_size']}"
})
activity_distribution = spark.sql("""
SELECT
cluster,
SUM(CASE WHEN active_days >= 6 THEN student_count ELSE 0 END) as high_active,
SUM(CASE WHEN active_days BETWEEN 3 AND 5 THEN student_count ELSE 0 END) as medium_active,
SUM(CASE WHEN active_days < 3 THEN student_count ELSE 0 END) as low_active
FROM clustered_users
GROUP BY cluster
""")
clustering_result = {
'cluster_summary': cluster_summary.toPandas().to_dict('records'),
'cluster_labels': cluster_labels,
'activity_distribution': activity_distribution.toPandas().to_dict('records'),
'model_centers': [center.toArray().tolist() for center in model.clusterCenters()]
}
return JsonResponse(clustering_result)
基于大数据的快手平台用户活跃度分析系统-结语
🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝
👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!
🍅 ↓↓主页获取源码联系↓↓🍅