计算机专业毕设展览:毕业生就业智能推荐信息系统,支持Java+Pytgon双开发,功能完善,模块充足!

63 阅读5分钟

一、个人简介

💖💖作者:计算机编程果茶熊 💙💙个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 计算机毕业设计选题 💕💕文末获取源码联系计算机编程果茶熊

二、系统介绍

开发语言:Java+Python 数据库:MySQL 系统架构:B/S 后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django 前端:Vue+HTML+CSS+JavaScript+jQuery

毕业生就业智能推荐信息系统采用Python+Django作为后端开发框,Vue+ElementUI构建前端交互界面,MySQL作为数据存储引擎,形成了完整的B/S架构Web应用系统。系统围绕毕业生求职就业这一核心场景,构建了个人中心、毕业生管理、企业管理、高校管理等十三个功能模块,通过智能推荐算法实现毕业生与合适岗位的精准匹配。系统支持毕业生用户注册个人信息、上传简历资料,企业用户发布岗位需求、查看求职者信息,管理员统一管理系统用户和数据。在技术实现上,后端用Django框架提供RESTful API接口,前端通过Vue.js实现数据双向绑定和组件化开发,ElementUI提供美观的UI组 件库,整体界面简洁友好。系统的智能推荐功能基于用户画像和岗位特征进行匹配计算,能够根据毕业生的专业背景、技能水平、地域偏好等因素,向其推荐合适的就业岗位 ,同时为企业推荐匹配度高的求职者,提高双方匹配效率。

三、毕业生就业智能推荐信息系统-视频解说

计算机专业毕设展览:毕业生就业智能推荐信息系统,支持Java+Pytgon双开发,功能完善,模块充足!

四、毕业生就业智能推荐信息系统-功能展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

五、毕业生就业智能推荐信息系统-代码展示


  from pyspark.sql import SparkSession
  from django.http import JsonResponse
  from django.views.decorators.csrf import csrf_exempt
  from django.utils.decorators import method_decorator
  from django.views import View
  import json
  import pandas as pd
  from sklearn.feature_extraction.text import TfidfVectorizer
  from sklearn.metrics.pairwise import cosine_similarity
  import numpy as np
  from .models import Graduate, Job, Resume, Interview, Company
  @method_decorator(csrf_exempt, name='dispatch')
  class IntelligentRecommendView(View):
      def post(self, request):
          spark = SparkSession.builder.appName("JobRecommendSystem").config("s    
  park.sql.adaptive.enabled", "true").getOrCreate()
          data = json.loads(request.body)
          graduate_id = data.get('graduate_id')
          graduate = Graduate.objects.get(id=graduate_id)
          jobs = Job.objects.filter(status=1).values('id', 'title',
  'requirements', 'salary', 'location', 'company_id')
          job_df = pd.DataFrame(list(jobs))
          spark_df = spark.createDataFrame(job_df)
          graduate_skills = graduate.skills if graduate.skills else ""
          graduate_major = graduate.major if graduate.major else ""
          graduate_location = graduate.preferred_location if
  graduate.preferred_location else ""
          user_profile = f"{graduate_skills} {graduate_major} 
  {graduate_location}"
          job_texts = []
          for job in jobs:
              job_text = f"{job['title']} {job['requirements']} 
  {job['location']}"
              job_texts.append(job_text)
          all_texts = [user_profile] + job_texts
          vectorizer = TfidfVectorizer(stop_words='english',
  max_features=1000)
          tfidf_matrix = vectorizer.fit_transform(all_texts)
          user_vector = tfidf_matrix[0]
          job_vectors = tfidf_matrix[1:]
          similarities = cosine_similarity(user_vector, job_vectors).flatten()    
          job_scores = list(zip(range(len(jobs)), similarities))
          job_scores.sort(key=lambda x: x[1], reverse=True)
          recommended_jobs = []
          for i, score in job_scores[:10]:
              job_info = list(jobs)[i]
              job_info['similarity_score'] = float(score)
              recommended_jobs.append(job_info)
          spark.stop()
          return JsonResponse({'status': 'success', 'recommended_jobs':
  recommended_jobs})
  @method_decorator(csrf_exempt, name='dispatch')
  class ResumeAnalysisView(View):
      def post(self, request):
          spark = SparkSession.builder.appName("ResumeAnalysis").config("spark    
  .sql.adaptive.enabled", "true").getOrCreate()
          data = json.loads(request.body)
          resume_id = data.get('resume_id')
          resume = Resume.objects.get(id=resume_id)
          resume_content = resume.content if resume.content else ""
          education = resume.education if resume.education else ""
          experience = resume.work_experience if resume.work_experience else      
  ""
          skills = resume.skills if resume.skills else ""
          full_resume_text = f"{resume_content} {education} {experience} 
  {skills}"
          resume_data = [{'id': resume.id, 'content': full_resume_text,
  'graduate_id': resume.graduate_id}]
          resume_df = pd.DataFrame(resume_data)
          spark_df = spark.createDataFrame(resume_df)
          skill_keywords = ['python', 'java', 'javascript', 'sql', 'html',        
  'css', 'react', 'vue', 'django', 'spring']
          education_keywords = ['本科', '硕士', '博士', '985', '211', '一本',     
  '二本']
          experience_keywords = ['实习', '项目', '开发', '设计', '管理',
  '团队', '领导']
          skill_score = sum(1 for keyword in skill_keywords if keyword.lower()    
   in full_resume_text.lower())
          education_score = sum(1 for keyword in education_keywords if keyword    
   in full_resume_text)
          experience_score = sum(1 for keyword in experience_keywords if
  keyword in full_resume_text)
          total_score = skill_score * 0.4 + education_score * 0.3 +
  experience_score * 0.3
          resume_quality = "优秀" if total_score >= 8 else "良好" if
  total_score >= 5 else "一般"
          improvement_suggestions = []
          if skill_score < 3:
              improvement_suggestions.append("建议补充更多技能关键词")
          if experience_score < 2:
              improvement_suggestions.append("建议增加项目经验描述")
          if education_score < 1:
              improvement_suggestions.append("建议完善教育背景信息")
          resume.analysis_score = total_score
          resume.quality_level = resume_quality
          resume.save()
          spark.stop()
          return JsonResponse({'status': 'success', 'quality_level':
  resume_quality, 'score': total_score, 'suggestions':
  improvement_suggestions})
  @method_decorator(csrf_exempt, name='dispatch')
  class InterviewResultAnalysisView(View):
      def post(self, request):
          spark = SparkSession.builder.appName("InterviewAnalysis").config("sp    
  ark.sql.adaptive.enabled", "true").getOrCreate()
          data = json.loads(request.body)
          company_id = data.get('company_id')
          interviews =
  Interview.objects.filter(company_id=company_id).values('id', 'graduate_id',     
  'result', 'score', 'feedback', 'interview_date')
          interview_df = pd.DataFrame(list(interviews))
          if interview_df.empty:
              spark.stop()
              return JsonResponse({'status': 'error', 'message':
  '暂无面试数据'})
          spark_df = spark.createDataFrame(interview_df)
          total_interviews = len(interviews)
          passed_interviews = len([i for i in interviews if i['result'] ==        
  '通过'])
          pass_rate = (passed_interviews / total_interviews * 100) if
  total_interviews > 0 else 0
          average_score = sum([i['score'] for i in interviews if i['score']])     
  / len([i for i in interviews if i['score']]) if any(i['score'] for i in
  interviews) else 0
          score_distribution = {'优秀': 0, '良好': 0, '一般': 0, '较差': 0}       
          for interview in interviews:
              if interview['score']:
                  if interview['score'] >= 90:
                      score_distribution['优秀'] += 1
                  elif interview['score'] >= 80:
                      score_distribution['良好'] += 1
                  elif interview['score'] >= 70:
                      score_distribution['一般'] += 1
                  else:
                      score_distribution['较差'] += 1
          common_feedback = []
          feedback_texts = [i['feedback'] for i in interviews if
  i['feedback']]
          if feedback_texts:
              feedback_keywords = ['技术能力', '沟通能力', '团队合作',
  '学习能力', '项目经验']
              for keyword in feedback_keywords:
                  count = sum(1 for feedback in feedback_texts if keyword in      
  feedback)
                  if count > len(feedback_texts) * 0.3:
                      common_feedback.append(keyword)
          analysis_result = {
              'total_interviews': total_interviews,
              'pass_rate': round(pass_rate, 2),
              'average_score': round(average_score, 2),
              'score_distribution': score_distribution,
              'common_feedback': common_feedback
          }
          spark.stop()
          return JsonResponse({'status': 'success', 'analysis':
  analysis_result})

六、毕业生就业智能推荐信息系统-文档展示

在这里插入图片描述

七、END

💕💕文末获取源码联系计算机编程果茶熊