技术门槛不高却含金量超高:老年人健康数据系统SpringBoot+Vue毕设,就业市场最需要

38 阅读6分钟

💖💖作者:计算机毕业设计小途 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目

@TOC

老年人健康数据远程监控与管理系统介绍

《基于SpringBoot+Vue的老年人健康数据远程监控与管理系统》是一款专为老年群体健康管理需求而设计的现代化Web应用系统,采用主流的前后端分离架构进行开发。系统后端基于SpringBoot框架构建,整合Spring、SpringMVC和MyBatis技术栈,提供稳定可靠的服务端支持,同时支持Python+Django技术栈作为替代方案;前端采用Vue.js配合ElementUI组件库开发,构建响应式用户界面,确保在不同设备上的良好用户体验;数据存储采用MySQL关系型数据库,保证数据的完整性和安全性。系统核心功能涵盖用户管理、健康数据录入与监控、个性化健康报告生成、健康知识科普、健康资讯推送、数据可视化看板展示等多个模块,为老年用户提供全方位的健康数据管理服务。通过系统首页可以快速了解个人健康状况概览,用户管理模块支持多角色权限控制,健康数据模块实现各项生理指标的实时监控和历史数据追踪,健康报告功能能够根据用户数据生成专业的分析报告,健康知识和资讯模块为用户提供科学的健康指导信息,数据看板通过图表形式直观展示健康趋势,个人中心和密码修改功能确保用户账户安全管理,系统管理模块为管理员提供系统维护和配置功能,整体构建了一个功能完善、操作便捷的老年人健康数据远程监控与管理平台。

老年人健康数据远程监控与管理系统演示视频

演示视频

老年人健康数据远程监控与管理系统演示图片

登陆界面.png

健康报告.png

健康数据.png

健康知识.png

数据看板.png

用户管理.png

老年人健康数据远程监控与管理系统代码展示

import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
import java.util.*;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
@RestController
@RequestMapping("/health")
public class HealthDataController {
    @Autowired
    private HealthDataMapper healthDataMapper;
    private SparkSession spark = SparkSession.builder()
            .appName("HealthDataAnalysis")
            .master("local[*]")
            .config("spark.sql.adaptive.enabled", "true")
            .getOrCreate();
    @PostMapping("/data/save")
    public Map<String, Object> saveHealthData(@RequestBody HealthData healthData) {
        Map<String, Object> result = new HashMap<>();
        try {
            healthData.setCreateTime(LocalDateTime.now());
            healthData.setUpdateTime(LocalDateTime.now());
            if (healthData.getSystolicPressure() != null && healthData.getDiastolicPressure() != null) {
                String bloodPressureLevel = analyzeBloodPressure(healthData.getSystolicPressure(), healthData.getDiastolicPressure());
                healthData.setBloodPressureLevel(bloodPressureLevel);
            }
            if (healthData.getBloodSugar() != null) {
                String bloodSugarLevel = analyzeBloodSugar(healthData.getBloodSugar());
                healthData.setBloodSugarLevel(bloodSugarLevel);
            }
            if (healthData.getWeight() != null && healthData.getHeight() != null) {
                double bmi = calculateBMI(healthData.getWeight(), healthData.getHeight());
                healthData.setBmi(bmi);
                healthData.setBmiLevel(analyzeBMI(bmi));
            }
            healthData.setRiskLevel(calculateOverallRisk(healthData));
            int saveResult = healthDataMapper.insertHealthData(healthData);
            if (saveResult > 0) {
                updateUserHealthStatus(healthData.getUserId(), healthData);
                result.put("code", 200);
                result.put("message", "健康数据保存成功");
                result.put("data", healthData);
            } else {
                result.put("code", 500);
                result.put("message", "健康数据保存失败");
            }
        } catch (Exception e) {
            result.put("code", 500);
            result.put("message", "系统异常:" + e.getMessage());
        }
        return result;
    }
    @GetMapping("/report/generate/{userId}")
    public Map<String, Object> generateHealthReport(@PathVariable Long userId, 
                                                  @RequestParam(defaultValue = "30") int days) {
        Map<String, Object> result = new HashMap<>();
        try {
            List<HealthData> recentData = healthDataMapper.getRecentHealthData(userId, days);
            if (recentData.isEmpty()) {
                result.put("code", 404);
                result.put("message", "暂无健康数据,无法生成报告");
                return result;
            }
            Dataset<Row> healthDataset = spark.createDataFrame(recentData, HealthData.class);
            healthDataset.createOrReplaceTempView("health_data");
            Row avgStats = spark.sql("SELECT AVG(systolic_pressure) as avg_systolic, " +
                                   "AVG(diastolic_pressure) as avg_diastolic, " +
                                   "AVG(blood_sugar) as avg_blood_sugar, " +
                                   "AVG(weight) as avg_weight, " +
                                   "AVG(bmi) as avg_bmi FROM health_data").first();
            HealthReport report = new HealthReport();
            report.setUserId(userId);
            report.setReportPeriod(days);
            report.setDataCount(recentData.size());
            report.setAvgSystolicPressure(avgStats.getDouble("avg_systolic"));
            report.setAvgDiastolicPressure(avgStats.getDouble("avg_diastolic"));
            report.setAvgBloodSugar(avgStats.getDouble("avg_blood_sugar"));
            report.setAvgWeight(avgStats.getDouble("avg_weight"));
            report.setAvgBmi(avgStats.getDouble("avg_bmi"));
            List<String> healthSuggestions = generateHealthSuggestions(report);
            report.setHealthSuggestions(String.join(";", healthSuggestions));
            String overallAssessment = generateOverallAssessment(report, recentData);
            report.setOverallAssessment(overallAssessment);
            report.setGenerateTime(LocalDateTime.now());
            healthDataMapper.insertHealthReport(report);
            result.put("code", 200);
            result.put("message", "健康报告生成成功");
            result.put("data", report);
        } catch (Exception e) {
            result.put("code", 500);
            result.put("message", "报告生成失败:" + e.getMessage());
        }
        return result;
    }
    @GetMapping("/dashboard/{userId}")
    public Map<String, Object> getHealthDashboard(@PathVariable Long userId) {
        Map<String, Object> result = new HashMap<>();
        try {
            List<HealthData> last30DaysData = healthDataMapper.getRecentHealthData(userId, 30);
            List<HealthData> last7DaysData = healthDataMapper.getRecentHealthData(userId, 7);
            if (last30DaysData.isEmpty()) {
                result.put("code", 404);
                result.put("message", "暂无健康数据");
                return result;
            }
            Dataset<Row> monthlyDataset = spark.createDataFrame(last30DaysData, HealthData.class);
            monthlyDataset.createOrReplaceTempView("monthly_health");
            Dataset<Row> weeklyDataset = spark.createDataFrame(last7DaysData, HealthData.class);
            weeklyDataset.createOrReplaceTempView("weekly_health");
            Row monthlyTrend = spark.sql("SELECT " +
                                       "CORR(CAST(create_time as timestamp), systolic_pressure) as bp_trend, " +
                                       "CORR(CAST(create_time as timestamp), blood_sugar) as bs_trend, " +
                                       "CORR(CAST(create_time as timestamp), weight) as weight_trend " +
                                       "FROM monthly_health").first();
            Map<String, Object> trendAnalysis = new HashMap<>();
            trendAnalysis.put("bloodPressureTrend", analyzeTrend(monthlyTrend.getDouble("bp_trend")));
            trendAnalysis.put("bloodSugarTrend", analyzeTrend(monthlyTrend.getDouble("bs_trend")));
            trendAnalysis.put("weightTrend", analyzeTrend(monthlyTrend.getDouble("weight_trend")));
            List<Map<String, Object>> chartData = new ArrayList<>();
            for (HealthData data : last30DaysData) {
                Map<String, Object> point = new HashMap<>();
                point.put("date", data.getCreateTime().format(DateTimeFormatter.ofPattern("MM-dd")));
                point.put("systolicPressure", data.getSystolicPressure());
                point.put("diastolicPressure", data.getDiastolicPressure());
                point.put("bloodSugar", data.getBloodSugar());
                point.put("weight", data.getWeight());
                chartData.add(point);
            }
            Map<String, Long> riskDistribution = last30DaysData.stream()
                    .collect(Collectors.groupingBy(HealthData::getRiskLevel, Collectors.counting()));
            Map<String, Object> dashboard = new HashMap<>();
            dashboard.put("trendAnalysis", trendAnalysis);
            dashboard.put("chartData", chartData);
            dashboard.put("riskDistribution", riskDistribution);
            dashboard.put("dataCount", last30DaysData.size());
            dashboard.put("lastUpdateTime", last30DaysData.get(0).getCreateTime());
            result.put("code", 200);
            result.put("message", "数据看板加载成功");
            result.put("data", dashboard);
        } catch (Exception e) {
            result.put("code", 500);
            result.put("message", "数据看板加载失败:" + e.getMessage());
        }
        return result;
    }
    private String analyzeBloodPressure(Integer systolic, Integer diastolic) {
        if (systolic >= 140 || diastolic >= 90) return "高血压";
        if (systolic >= 120 || diastolic >= 80) return "血压偏高";
        return "正常";
    }
    private String analyzeBloodSugar(Double bloodSugar) {
        if (bloodSugar >= 7.0) return "血糖偏高";
        if (bloodSugar <= 3.9) return "血糖偏低";
        return "正常";
    }
    private double calculateBMI(Double weight, Double height) {
        return weight / Math.pow(height / 100, 2);
    }
    private String analyzeBMI(double bmi) {
        if (bmi >= 28) return "肥胖";
        if (bmi >= 24) return "超重";
        if (bmi < 18.5) return "体重不足";
        return "正常";
    }
    private String calculateOverallRisk(HealthData data) {
        int riskScore = 0;
        if ("高血压".equals(data.getBloodPressureLevel())) riskScore += 2;
        if ("血糖偏高".equals(data.getBloodSugarLevel())) riskScore += 2;
        if ("肥胖".equals(data.getBmiLevel())) riskScore += 1;
        if (riskScore >= 3) return "高风险";
        if (riskScore >= 1) return "中等风险";
        return "低风险";
    }
    private void updateUserHealthStatus(Long userId, HealthData latestData) {
        healthDataMapper.updateUserHealthStatus(userId, latestData.getRiskLevel(), 
                                              latestData.getBloodPressureLevel(),
                                              latestData.getBloodSugarLevel());
    }
    private List<String> generateHealthSuggestions(HealthReport report) {
        List<String> suggestions = new ArrayList<>();
        if (report.getAvgSystolicPressure() > 130) {
            suggestions.add("建议控制食盐摄入,适量运动");
        }
        if (report.getAvgBloodSugar() > 6.1) {
            suggestions.add("建议控制糖分摄入,定期监测血糖");
        }
        if (report.getAvgBmi() > 24) {
            suggestions.add("建议合理控制体重,保持均衡饮食");
        }
        return suggestions;
    }
    private String generateOverallAssessment(HealthReport report, List<HealthData> dataList) {
        long highRiskCount = dataList.stream().filter(d -> "高风险".equals(d.getRiskLevel())).count();
        double riskRatio = (double) highRiskCount / dataList.size();
        if (riskRatio > 0.5) return "整体健康状况需要重点关注";
        if (riskRatio > 0.2) return "健康状况基本稳定,建议持续监测";
        return "健康状况良好,请继续保持";
    }
    private String analyzeTrend(Double correlation) {
        if (correlation == null || Double.isNaN(correlation)) return "数据不足";
        if (correlation > 0.3) return "上升趋势";
        if (correlation < -0.3) return "下降趋势";
        return "相对稳定";
    }
}

老年人健康数据远程监控与管理系统文档展示

文档.png

💖💖作者:计算机毕业设计小途 💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我! 💛💛想说的话:感谢大家的关注与支持! 💜💜 网站实战项目 安卓/小程序实战项目 大数据实战项目 深度学习实战项目