TreeMap原理

42 阅读7分钟

说明

  • TreeMap根据其键的自然顺序排序(存入取出顺序不一致),或者根据TreeMap创建时提供的Comparator排序;
  • 线程不安全;
  • key 不可以存入null;
  • 底层是基于红黑树实现的

前提

TreeMap 是基于红黑树来维护key的顺序的;
红黑树的特点:一颗自平衡的排序二叉树;

  • 二叉树

image

如果以H为根节点,左右两边高低不平衡,高度相差达到了2;

  • 平衡二叉树

image

从任何一个字母为根节点,左右两边的深度差不了2,最多是1;

  • 平衡二叉排序树

image

  • 红黑树

image

二叉树查找流程:

  1. 首先将目标值和根节点的值进行比较,如果目标值小于根节点的值,则再和根节点的左孩子进行比较。如果目标值大于根节点的值,则继续和根节点的右孩子比较;
  2. 在查找过程中,如果目标值和二叉树中的某个节点值相等,则返回 true,否则返回 false;

TreeMap 源码分析

//一个排序器,作为key的排序,查找规则
private final Comparator<? super K> comparator;
//红黑树的根节点:每个节点是一个Entry
private transient Entry<K,V> root;
//集合元素数量
private transient int size = 0;
//集合修改的记录
private transient int modCount = 0;

Entry类

static final class Entry<K,V> implements Map.Entry<K,V> {
        K key;
        V value;
     	//左子树
        Entry<K,V> left;
     	//右子树
        Entry<K,V> right;
     	//父节点
        Entry<K,V> parent;
     	//每个节点的颜色:红黑树属性。
        boolean color = BLACK;
     
        ...
 
        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 
            return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
        }
 
        public int hashCode() {
            int keyHash = (key==null ? 0 : key.hashCode());
            int valueHash = (value==null ? 0 : value.hashCode());
            return keyHash ^ valueHash;
        }
 
}
get()方法

TreeMap 查找和二叉树查找流程类似,只不过在 TreeMap 中,节点(Entry)存储的是键值对<k,v>。在查找过程中,比较的是键的大小,返回的是值,如果没找到,则返回null。

public V get(Object key) {
        //调用 getEntry方法查找
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p. value);
}
 
final Entry<K,V> getEntry(Object key) {
    / 如果比较器为空,只是用key作为比较器查询
    if (comparator != null) 
        return getEntryUsingComparator(key);
    if (key == null)
        throw new NullPointerException();
    Comparable<? super K> k = (Comparable<? super K>) key;
    // 取得root节点
    Entry<K,V> p = root;
   //核心来了:从root节点开始查找,根据比较器判断是在左子树还是右子树
    while (p != null) {
        int cmp = k.compareTo(p.key);
        if (cmp < 0)
            p = p. left;
        else if (cmp > 0)
            p = p. right;
        else
           return p;
    }
   

概括:

  1. 当key大于当前节点,把当前节点指针指向左孩子继续循环。
  2. 当key小于当前节点,把当前节点的指针指向右孩子继续循环。
  3. 当key等于当前节点,则返回当前节点。
put()方法说明
public V put(K key, V value) {
        Entry<K,V> t = root;
        // 1.如果根节点为 null,将新节点设为根节点
        if (t == null) {
            compare(key, key); // type (and possibly null) check
 
            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        //如果root不为null,说明已存在元素 
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        //如果比较器不为null 则使用比较器
        if (cpr != null) {
            //找到元素的插入位置
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                 //当前key小于节点key 向左子树查找
                if (cmp < 0)
                    t = t.left;
                    //当前key大于节点key 向右子树查找
                else if (cmp > 0)
                    t = t.right;
                else
                    //相等的情况下 直接更新节点值
                    return t.setValue(value);
            } while (t != null);
        }
        //如果比较器为null 则使用默认比较器
        else {
            //如果key为null  则抛出异常
            if (key == null)
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
                Comparable<? super K> k = (Comparable<? super K>) key;
             //找到元素的插入位置
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry<K,V> e = new Entry<>(key, value, parent);
        //根据比较结果决定插入到左子树还是右子树
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        //保持红黑树性质,进行红黑树的旋转等操作
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
}

概括:

  1. 获取根节点,根节点为空,产生一个根节点,将其着色为黑色,退出余下流程;
  2. 获取比较器,如果传入的Comparator接口不为空,使用传入的Comparator接口实现类进行比较;如果传入的Comparator接口为空,将Key强转为Comparable接口进行比较;
  3. 从根节点开始逐一依照规定的排序算法进行比较,取比较值cmp,如果cmp=0,表示插入的Key已存在;如果cmp>0,取当前节点的右子节点;如果cmp<0,取当前节点的左子节点;
  4. 排除插入的Key已存在的情况,第3步的比较一直比较到当前节点t的左子节点或右子节点为null,此时t就是我们寻找到的节点,cmp>0则准备往t的右子节点插入新节点,cmp<0则准备往t的左子节点插入新节点;
  5. new出一个新节点,默认为黑色,根据cmp的值向t的左边或者右边进行插入;
  6. 插入之后进行修复,包括左旋、右旋、重新着色这些操作,让树保持平衡性;
fixAfterInsertion()方法
private void fixAfterInsertion(Entry<K,V> x) {
    // 将新插入节点的颜色设置为红色
    x. color = RED;
    // while循环,保证新插入节点x不是根节点或者新插入节点x的父节点不是红色(这两种情况不需要调整)
    while (x != null && x != root && x. parent.color == RED) {
        // 如果新插入节点x的父节点是祖父节点的左孩子
        if (parentOf(x) == leftOf(parentOf (parentOf(x)))) {
            // 取得新插入节点x的叔叔节点
            Entry<K,V> y = rightOf(parentOf (parentOf(x)));
            // 如果新插入x的父节点是红色
            if (colorOf(y) == RED) {
                // 将x的父节点设置为黑色
                setColor(parentOf (x), BLACK);
                // 将x的叔叔节点设置为黑色
                setColor(y, BLACK);
                // 将x的祖父节点设置为红色
                setColor(parentOf (parentOf(x)), RED);
                // 将x指向祖父节点,如果x的祖父节点的父节点是红色,按照上面的步奏继续循环
                x = parentOf(parentOf (x));
            } else {
                // 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的右孩子
                if (x == rightOf( parentOf(x))) {
                    // 左旋父节点
                    x = parentOf(x);
                    rotateLeft(x);
                }
                // 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的左孩子
                // 将x的父节点设置为黑色
                setColor(parentOf (x), BLACK);
                // 将x的祖父节点设置为红色
                setColor(parentOf (parentOf(x)), RED);
                // 右旋x的祖父节点
                rotateRight( parentOf(parentOf (x)));
            }
        } else { // 如果新插入节点x的父节点是祖父节点的右孩子和上面的相似
            Entry<K,V> y = leftOf(parentOf (parentOf(x)));
            if (colorOf(y) == RED) {
                setColor(parentOf (x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf (parentOf(x)), RED);
                x = parentOf(parentOf (x));
            } else {
                if (x == leftOf( parentOf(x))) {
                    x = parentOf(x);
                    rotateRight(x);
                }
                setColor(parentOf (x), BLACK);
                setColor(parentOf (parentOf(x)), RED);
                rotateLeft( parentOf(parentOf (x)));
            }
        }
    }
    // 最后将根节点设置为黑色
    root.color = BLACK;
}
remove()方法
public V remove(Object key) {
        // 根据key查找到对应的节点对象
        Entry<K,V> p = getEntry(key);
        if (p == null)
            return null;
 
        // 记录key对应的value,供返回使用
        V oldValue = p. value;
        // 删除节点
        deleteEntry(p);
        return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
        modCount++;
        //元素个数减一
        size--;
        // 如果被删除的节点p的左孩子和右孩子都不为空,则查找其替代节
        if (p.left != null && p. right != null) {
            // 查找p的替代节点
            Entry<K,V> s = successor (p);
            p. key = s.key ;
            p. value = s.value ;
            p = s;
        }
        Entry<K,V> replacement = (p. left != null ? p.left : p. right);
        if (replacement != null) { 
            // 将p的父节点拷贝给替代节点
            replacement. parent = p.parent ;
            // 如果替代节点p的父节点为空,也就是p为跟节点,则将replacement设置为根节点
            if (p.parent == null)
                root = replacement;
            // 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的左孩子
            else if (p == p.parent. left)
                p. parent.left   = replacement;
            // 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的右孩子
            else
                p. parent.right = replacement;
            // 将替代节点p的left、right、parent的指针都指向空
            p. left = p.right = p.parent = null;
            // 如果替代节点p的颜色是黑色,则需要调整红黑树以保持其平衡
            if (p.color == BLACK)
                fixAfterDeletion(replacement);
        } else if (p.parent == null) { // return if we are the only node.
            // 如果要替代节点p没有父节点,代表p为根节点,直接删除即可
            root = null;
        } else {
            // 如果p的颜色是黑色,则调整红黑树
            if (p.color == BLACK)
                fixAfterDeletion(p);
            // 下面删除替代节点p
            if (p.parent != null) {
                // 解除p的父节点对p的引用
                if (p == p.parent .left)
                    p. parent.left = null;
                else if (p == p.parent. right)
                    p. parent.right = null;
                // 解除p对p父节点的引用
                p. parent = null;
            }
        }
}

删除太复杂放弃!