说明
- TreeMap根据其键的自然顺序排序(存入取出顺序不一致),或者根据TreeMap创建时提供的Comparator排序;
- 线程不安全;
- key 不可以存入null;
- 底层是基于红黑树实现的
前提
TreeMap 是基于红黑树来维护key的顺序的;
红黑树的特点:一颗自平衡的排序二叉树;
- 二叉树
如果以H为根节点,左右两边高低不平衡,高度相差达到了2;
- 平衡二叉树
从任何一个字母为根节点,左右两边的深度差不了2,最多是1;
- 平衡二叉排序树
- 红黑树
二叉树查找流程:
- 首先将目标值和根节点的值进行比较,如果目标值小于根节点的值,则再和根节点的左孩子进行比较。如果目标值大于根节点的值,则继续和根节点的右孩子比较;
- 在查找过程中,如果目标值和二叉树中的某个节点值相等,则返回 true,否则返回 false;
TreeMap 源码分析
//一个排序器,作为key的排序,查找规则
private final Comparator<? super K> comparator;
//红黑树的根节点:每个节点是一个Entry
private transient Entry<K,V> root;
//集合元素数量
private transient int size = 0;
//集合修改的记录
private transient int modCount = 0;
Entry类
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
//左子树
Entry<K,V> left;
//右子树
Entry<K,V> right;
//父节点
Entry<K,V> parent;
//每个节点的颜色:红黑树属性。
boolean color = BLACK;
...
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
}
public int hashCode() {
int keyHash = (key==null ? 0 : key.hashCode());
int valueHash = (value==null ? 0 : value.hashCode());
return keyHash ^ valueHash;
}
}
get()方法
TreeMap 查找和二叉树查找流程类似,只不过在 TreeMap 中,节点(Entry)存储的是键值对<k,v>。在查找过程中,比较的是键的大小,返回的是值,如果没找到,则返回null。
public V get(Object key) {
//调用 getEntry方法查找
Entry<K,V> p = getEntry(key);
return (p==null ? null : p. value);
}
final Entry<K,V> getEntry(Object key) {
/ 如果比较器为空,只是用key作为比较器查询
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
// 取得root节点
Entry<K,V> p = root;
//核心来了:从root节点开始查找,根据比较器判断是在左子树还是右子树
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p. left;
else if (cmp > 0)
p = p. right;
else
return p;
}
概括:
- 当key大于当前节点,把当前节点指针指向左孩子继续循环。
- 当key小于当前节点,把当前节点的指针指向右孩子继续循环。
- 当key等于当前节点,则返回当前节点。
put()方法说明
public V put(K key, V value) {
Entry<K,V> t = root;
// 1.如果根节点为 null,将新节点设为根节点
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
//如果root不为null,说明已存在元素
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
//如果比较器不为null 则使用比较器
if (cpr != null) {
//找到元素的插入位置
do {
parent = t;
cmp = cpr.compare(key, t.key);
//当前key小于节点key 向左子树查找
if (cmp < 0)
t = t.left;
//当前key大于节点key 向右子树查找
else if (cmp > 0)
t = t.right;
else
//相等的情况下 直接更新节点值
return t.setValue(value);
} while (t != null);
}
//如果比较器为null 则使用默认比较器
else {
//如果key为null 则抛出异常
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
//找到元素的插入位置
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
//根据比较结果决定插入到左子树还是右子树
if (cmp < 0)
parent.left = e;
else
parent.right = e;
//保持红黑树性质,进行红黑树的旋转等操作
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
概括:
- 获取根节点,根节点为空,产生一个根节点,将其着色为黑色,退出余下流程;
- 获取比较器,如果传入的Comparator接口不为空,使用传入的Comparator接口实现类进行比较;如果传入的Comparator接口为空,将Key强转为Comparable接口进行比较;
- 从根节点开始逐一依照规定的排序算法进行比较,取比较值cmp,如果cmp=0,表示插入的Key已存在;如果cmp>0,取当前节点的右子节点;如果cmp<0,取当前节点的左子节点;
- 排除插入的Key已存在的情况,第3步的比较一直比较到当前节点t的左子节点或右子节点为null,此时t就是我们寻找到的节点,cmp>0则准备往t的右子节点插入新节点,cmp<0则准备往t的左子节点插入新节点;
- new出一个新节点,默认为黑色,根据cmp的值向t的左边或者右边进行插入;
- 插入之后进行修复,包括左旋、右旋、重新着色这些操作,让树保持平衡性;
fixAfterInsertion()方法
private void fixAfterInsertion(Entry<K,V> x) {
// 将新插入节点的颜色设置为红色
x. color = RED;
// while循环,保证新插入节点x不是根节点或者新插入节点x的父节点不是红色(这两种情况不需要调整)
while (x != null && x != root && x. parent.color == RED) {
// 如果新插入节点x的父节点是祖父节点的左孩子
if (parentOf(x) == leftOf(parentOf (parentOf(x)))) {
// 取得新插入节点x的叔叔节点
Entry<K,V> y = rightOf(parentOf (parentOf(x)));
// 如果新插入x的父节点是红色
if (colorOf(y) == RED) {
// 将x的父节点设置为黑色
setColor(parentOf (x), BLACK);
// 将x的叔叔节点设置为黑色
setColor(y, BLACK);
// 将x的祖父节点设置为红色
setColor(parentOf (parentOf(x)), RED);
// 将x指向祖父节点,如果x的祖父节点的父节点是红色,按照上面的步奏继续循环
x = parentOf(parentOf (x));
} else {
// 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的右孩子
if (x == rightOf( parentOf(x))) {
// 左旋父节点
x = parentOf(x);
rotateLeft(x);
}
// 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的左孩子
// 将x的父节点设置为黑色
setColor(parentOf (x), BLACK);
// 将x的祖父节点设置为红色
setColor(parentOf (parentOf(x)), RED);
// 右旋x的祖父节点
rotateRight( parentOf(parentOf (x)));
}
} else { // 如果新插入节点x的父节点是祖父节点的右孩子和上面的相似
Entry<K,V> y = leftOf(parentOf (parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf (x), BLACK);
setColor(y, BLACK);
setColor(parentOf (parentOf(x)), RED);
x = parentOf(parentOf (x));
} else {
if (x == leftOf( parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf (x), BLACK);
setColor(parentOf (parentOf(x)), RED);
rotateLeft( parentOf(parentOf (x)));
}
}
}
// 最后将根节点设置为黑色
root.color = BLACK;
}
remove()方法
public V remove(Object key) {
// 根据key查找到对应的节点对象
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
// 记录key对应的value,供返回使用
V oldValue = p. value;
// 删除节点
deleteEntry(p);
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
//元素个数减一
size--;
// 如果被删除的节点p的左孩子和右孩子都不为空,则查找其替代节
if (p.left != null && p. right != null) {
// 查找p的替代节点
Entry<K,V> s = successor (p);
p. key = s.key ;
p. value = s.value ;
p = s;
}
Entry<K,V> replacement = (p. left != null ? p.left : p. right);
if (replacement != null) {
// 将p的父节点拷贝给替代节点
replacement. parent = p.parent ;
// 如果替代节点p的父节点为空,也就是p为跟节点,则将replacement设置为根节点
if (p.parent == null)
root = replacement;
// 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的左孩子
else if (p == p.parent. left)
p. parent.left = replacement;
// 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的右孩子
else
p. parent.right = replacement;
// 将替代节点p的left、right、parent的指针都指向空
p. left = p.right = p.parent = null;
// 如果替代节点p的颜色是黑色,则需要调整红黑树以保持其平衡
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
// 如果要替代节点p没有父节点,代表p为根节点,直接删除即可
root = null;
} else {
// 如果p的颜色是黑色,则调整红黑树
if (p.color == BLACK)
fixAfterDeletion(p);
// 下面删除替代节点p
if (p.parent != null) {
// 解除p的父节点对p的引用
if (p == p.parent .left)
p. parent.left = null;
else if (p == p.parent. right)
p. parent.right = null;
// 解除p对p父节点的引用
p. parent = null;
}
}
}
删除太复杂放弃!