【Spring开发】SpringCloud服务端高级框架第5篇:2.死信交换机【附代码文档】

53 阅读1分钟

🏆🏆🏆教程全知识点简介:微服务保护、服务异步通信、消息中间件部署、分布式事务、搜索引擎、缓存、数据同步以及相关组件的安装配置等技术要点。在微服务保护方面,介绍了 Sentinel 的基础知识,包括雪崩问题、超时处理、舱壁模式、断路器机制,以及不同服务保护技术的对比;讲解了流量控制(簇点链路、流控模式、热点参数限流)、隔离与降级(FeignClient 整合 Sentinel、线程隔离)、授权规则(自定义异常结果)及规则持久化(规则管理模式与 pull 模式),并演示了基于 Nacos 的规则持久化改造。服务异步通信部分探讨了消息可靠性(生产者消息确认、Return 回调、ConfirmCallback)、死信交换机、TTL 队列等高级应用。RabbitMQ 部署指南涵盖了单机部署、DelayExchange 插件安装、集群部署、镜像模式等内容。分布式事务部分介绍了 CAP 定理、BASE 理论、常见解决方案,Seata 的基础与部署(TC 服务部署、Nacos 配置、数据库表创建)、多种事务模式(XA 模式及优缺点、四种模式对比)和高可用架构。分布式搜索引擎章节讲解了 Elasticsearch 的原理(ELK 技术栈、倒排索引)、索引库与文档操作、RestAPI 与 RestClient 的使用、排序与高亮、酒店搜索案例(分页、竞价排名、ad标记、算分函数)、自动补全、数据同步(同步调用、监听 binlog)、集群搭建与脑裂问题、分片存储测试,以及单点 ES、Kibana、IK 分词器安装。缓存部分介绍了 Redis 持久化(RDB 与 AOF 对比)、单机安装 Redis、Redis 集群、多级缓存(JVM 进程缓存、Caffeine)、请求参数处理、Tomcat 查询、HTTP 工具与 CJSON 工具类、Redis 缓存查询。数据同步与网关部分包括 Canal 安装(开启 MySQL 主从、设置权限)、OpenResty 安装(开发库、目录结构、环境变量配置)及运行流程。


📚📚👉👉👉git仓库code.zip 直接get:   gitlab.com/yiqing112/b…    🍅🍅

✨ 本教程项目亮点

🧠 知识体系完整:覆盖从基础原理、核心方法到高阶应用的全流程内容
💻 全技术链覆盖:完整前后端技术栈,涵盖开发必备技能
🚀 从零到实战:适合 0 基础入门到提升,循序渐进掌握核心能力
📚 丰富文档与代码示例:涵盖多种场景,可运行、可复用
🛠 工作与学习双参考:不仅适合系统化学习,更可作为日常开发中的查阅手册
🧩 模块化知识结构:按知识点分章节,便于快速定位和复习
📈 长期可用的技术积累:不止一次学习,而是能伴随工作与项目长期参考


🎯🎯🎯全教程总章节


🚀🚀🚀本篇主要内容

2.死信交换机

2.1.初识死信交换机

2.1.1.什么是死信交换机

什么是死信?

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。

如图,一个消息被消费者拒绝了,变成了死信:

因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:

如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:

另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

JDK 8 API 文档

2.1.2.利用死信交换机接收死信(拓展)

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

在consumer服务中,定义一组死信交换机、死信队列:

Asciidoctor 文档

// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct
@Bean
public Queue simpleQueue2(){
    return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化
        .deadLetterExchange("dl.direct") // 指定死信交换机
        .build();
}
// 声明死信交换机 dl.direct
@Bean
public DirectExchange dlExchange(){
    return new DirectExchange("dl.direct", true, false);
}
// 声明存储死信的队列 dl.queue
@Bean
public Queue dlQueue(){
    return new Queue("dl.queue", true);
}
// 将死信队列 与 死信交换机绑定
@Bean
public Binding dlBinding(){
    return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");
}

2.1.3.总结

什么样的消息会成为死信?

  • 消息被消费者reject或者返回nack
  • 消息超时未消费
  • 队列满了

死信交换机的使用场景是什么?

  • 如果队列绑定了死信交换机,死信会投递到死信交换机;
  • 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。

2.2.TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间

2.2.1.接收超时死信的死信交换机

在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "dl.ttl.queue", durable = "true"),
    exchange = @Exchange(name = "dl.ttl.direct"),
    key = "ttl"
))
public void listenDlQueue(String msg){
    log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}

2.2.2.声明一个队列,并且指定TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

@Bean
public Queue ttlQueue(){
    return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化
        .ttl(10000) // 设置队列的超时时间,10秒
        .deadLetterExchange("dl.ttl.direct") // 指定死信交换机
        .build();
}

注意,这个队列设定了死信交换机为dl.ttl.direct

声明交换机,将ttl与交换机绑定:

@Bean
public DirectExchange ttlExchange(){
    return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){
    return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}

发送消息,但是不要指定TTL:

@Test
public void testTTLQueue() {
    // 创建消息
    String message = "hello, ttl queue";
    // 消息ID,需要封装到CorrelationData中
    CorrelationDa

# 3.惰性队列

## 3.1.消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问