🎓 作者:计算机毕设小月哥 | 软件开发专家
🖥️ 简介:8年计算机软件程序开发经验。精通Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等技术栈。
🛠️ 专业服务 🛠️
需求定制化开发
源码提供与讲解
技术文档撰写(指导计算机毕设选题【新颖+创新】、任务书、开题报告、文献综述、外文翻译等)
项目答辩演示PPT制作
🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝
👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!
🍅 ↓↓主页获取源码联系↓↓🍅
基于大数据的健身房会员锻炼数据分析与可视化系统-功能介绍
基于大数据的健身房会员锻炼数据分析与可视化系统是一套融合了Hadoop分布式存储、Spark大数据计算引擎以及Django后端框架的综合性数据分析平台。该系统采用Hadoop+HDFS构建稳定的大数据存储架构,通过Spark SQL和Pandas、NumPy等数据科学库实现对海量健身房会员锻炼数据的高效处理与深度挖掘。前端采用Vue+ElementUI+Echarts技术栈,为用户提供直观友好的数据可视化界面。系统核心功能涵盖会员基本画像分析、健身行为偏好分析、锻炼效果与健康关联分析以及锻炼效率与强度分析四大维度,能够从性别分布、年龄结构、经验水平、BMI指数等多个角度构建会员画像,深入分析不同锻炼类型的受欢迎程度、卡路里消耗效率、心率强度等关键指标,为健身房运营决策提供科学的数据支撑。
基于大数据的健身房会员锻炼数据分析与可视化系统-选题背景意义
选题背景 随着国民生活水平的持续提升和健康意识的显著增强,健身行业迎来了蓬勃发展的黄金时期。根据大数据统计截止到2020年,每周参加1次的健身人数已经达到了7亿人,参加锻炼人数达到了4.35亿,体育消费总共达到了1.5万亿元,这一庞大的用户基础为健身房产业带来了前所未有的机遇。然而,面对日益激烈的市场竞争,传统的健身房管理模式已经难以满足精细化运营的需求。大部分健身房在会员数据管理方面仍停留在简单的档案记录层面,缺乏对会员锻炼行为、健康状况、消费偏好等深层次信息的有效分析和利用。这种粗放式的管理方式不仅影响了会员体验和满意度,也制约了健身房的可持续发展。与此同时,大数据技术的快速发展为解决这一难题提供了新的思路,通过构建专业的数据分析系统,可以帮助健身房从海量的会员数据中挖掘出有价值的商业洞察。 选题意义 本课题的研究具有一定的理论价值和实际应用意义。从理论角度来看,该系统将大数据处理技术与健身行业的实际业务场景相结合,探索了Hadoop+Spark技术栈在垂直行业数据分析中的具体应用模式,为相关领域的技术研究提供了有益的参考案例。从实际应用层面来说,系统能够帮助健身房管理者更深入地了解会员群体特征和锻炼习惯,通过科学的数据分析支持运营决策的制定。比如通过分析不同年龄段、性别会员的锻炼偏好,可以优化课程安排和器材配置;通过监测会员的锻炼效果和健康指标变化,可以提供更个性化的健身指导建议。对于计算机专业的学习而言,该项目涵盖了分布式存储、大数据计算、数据可视化等多个技术领域,有助于加深对大数据技术体系的理解和掌握。当然,作为一个毕业设计项目,本系统在数据规模和业务复杂度方面相对有限,主要起到学习实践和技术验证的作用,为今后从事相关工作奠定基础。
基于大数据的健身房会员锻炼数据分析与可视化系统-技术选型
大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL
基于大数据的健身房会员锻炼数据分析与可视化系统-视频展示
基于大数据的健身房会员锻炼数据分析与可视化系统-图片展示
基于大数据的健身房会员锻炼数据分析与可视化系统-代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, sum, when, desc, asc
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
def member_profile_analysis(request):
spark = SparkSession.builder.appName("GymMemberProfileAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
df = spark.read.csv("/data/gym_members_data.csv", header=True, inferSchema=True)
gender_analysis = df.groupBy("Gender").agg(count("*").alias("count")).collect()
gender_result = [{"gender": row.Gender, "count": row.count} for row in gender_analysis]
age_ranges = [(18, 25, "18-25"), (26, 35, "26-35"), (36, 45, "36-45"), (46, 55, "46-55"), (56, 100, "55+")]
age_analysis = []
for min_age, max_age, label in age_ranges:
count_in_range = df.filter((col("Age") >= min_age) & (col("Age") <= max_age)).count()
age_analysis.append({"age_range": label, "count": count_in_range})
experience_analysis = df.groupBy("Experience_Level").agg(count("*").alias("count")).collect()
exp_mapping = {1: "初学者", 2: "中级", 3: "专家"}
experience_result = [{"level": exp_mapping.get(row.Experience_Level, "未知"), "count": row.count} for row in experience_analysis]
bmi_ranges = [(0, 18.5, "偏瘦"), (18.5, 24.9, "标准"), (25.0, 29.9, "超重"), (30.0, 50.0, "肥胖")]
bmi_analysis = []
for min_bmi, max_bmi, label in bmi_ranges:
count_in_range = df.filter((col("BMI") >= min_bmi) & (col("BMI") < max_bmi)).count()
bmi_analysis.append({"bmi_category": label, "count": count_in_range})
frequency_analysis = df.groupBy("Workout_Frequency (days/week)").agg(count("*").alias("count")).orderBy(asc("Workout_Frequency (days/week)")).collect()
frequency_result = [{"frequency": row["Workout_Frequency (days/week)"], "count": row.count} for row in frequency_analysis]
result_data = {"gender_distribution": gender_result, "age_structure": age_analysis, "experience_levels": experience_result, "bmi_distribution": bmi_analysis, "workout_frequency": frequency_result}
spark.stop()
return JsonResponse({"status": "success", "data": result_data})
def workout_behavior_analysis(request):
spark = SparkSession.builder.appName("GymWorkoutBehaviorAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
df = spark.read.csv("/data/gym_members_data.csv", header=True, inferSchema=True)
workout_popularity = df.groupBy("Workout_Type").agg(count("*").alias("count")).orderBy(desc("count")).collect()
popularity_result = [{"workout_type": row.Workout_Type, "count": row.count} for row in workout_popularity]
gender_workout_prefs = df.groupBy("Gender", "Workout_Type").agg(count("*").alias("count")).collect()
gender_prefs_result = []
for row in gender_workout_prefs:
gender_prefs_result.append({"gender": row.Gender, "workout_type": row.Workout_Type, "count": row.count})
age_workout_analysis = []
age_ranges = [(18, 25, "18-25"), (26, 35, "26-35"), (36, 45, "36-45"), (46, 55, "46-55"), (56, 100, "55+")]
for min_age, max_age, age_label in age_ranges:
age_filtered = df.filter((col("Age") >= min_age) & (col("Age") <= max_age))
age_workout_counts = age_filtered.groupBy("Workout_Type").agg(count("*").alias("count")).collect()
for workout_row in age_workout_counts:
age_workout_analysis.append({"age_range": age_label, "workout_type": workout_row.Workout_Type, "count": workout_row.count})
exp_workout_analysis = df.groupBy("Experience_Level", "Workout_Type").agg(count("*").alias("count")).collect()
exp_mapping = {1: "初学者", 2: "中级", 3: "专家"}
exp_workout_result = []
for row in exp_workout_analysis:
exp_workout_result.append({"experience_level": exp_mapping.get(row.Experience_Level, "未知"), "workout_type": row.Workout_Type, "count": row.count})
duration_ranges = [(0, 1, "0-1小时"), (1, 1.5, "1-1.5小时"), (1.5, 3, "1.5小时以上")]
duration_analysis = []
for min_duration, max_duration, duration_label in duration_ranges:
if max_duration == 3:
count_in_range = df.filter(col("Session_Duration (hours)") >= min_duration).count()
else:
count_in_range = df.filter((col("Session_Duration (hours)") >= min_duration) & (col("Session_Duration (hours)") < max_duration)).count()
duration_analysis.append({"duration_range": duration_label, "count": count_in_range})
result_data = {"workout_popularity": popularity_result, "gender_preferences": gender_prefs_result, "age_preferences": age_workout_analysis, "experience_preferences": exp_workout_result, "session_duration": duration_analysis}
spark.stop()
return JsonResponse({"status": "success", "data": result_data})
def workout_effectiveness_analysis(request):
spark = SparkSession.builder.appName("GymWorkoutEffectivenessAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
df = spark.read.csv("/data/gym_members_data.csv", header=True, inferSchema=True)
calories_by_workout = df.groupBy("Workout_Type").agg(avg("Calories_Burned").alias("avg_calories")).orderBy(desc("avg_calories")).collect()
calories_result = [{"workout_type": row.Workout_Type, "avg_calories": round(row.avg_calories, 2)} for row in calories_by_workout]
frequency_vs_fat = df.groupBy("Workout_Frequency (days/week)").agg(avg("Fat_Percentage").alias("avg_fat_percentage")).orderBy(asc("Workout_Frequency (days/week)")).collect()
frequency_fat_result = [{"workout_frequency": row["Workout_Frequency (days/week)"], "avg_fat_percentage": round(row.avg_fat_percentage, 2)} for row in frequency_vs_fat]
duration_ranges = [(0, 1, "0-1小时"), (1, 1.5, "1-1.5小时"), (1.5, 3, "1.5小时以上")]
duration_vs_bpm = []
for min_duration, max_duration, duration_label in duration_ranges:
if max_duration == 3:
filtered_df = df.filter(col("Session_Duration (hours)") >= min_duration)
else:
filtered_df = df.filter((col("Session_Duration (hours)") >= min_duration) & (col("Session_Duration (hours)") < max_duration))
avg_bpm = filtered_df.agg(avg("Resting_BPM").alias("avg_resting_bpm")).collect()[0].avg_resting_bpm
if avg_bpm:
duration_vs_bpm.append({"duration_range": duration_label, "avg_resting_bpm": round(avg_bpm, 2)})
exp_health_comparison = df.groupBy("Experience_Level").agg(avg("Fat_Percentage").alias("avg_fat"), avg("Resting_BPM").alias("avg_bpm")).collect()
exp_mapping = {1: "初学者", 2: "中级", 3: "专家"}
exp_health_result = []
for row in exp_health_comparison:
exp_health_result.append({"experience_level": exp_mapping.get(row.Experience_Level, "未知"), "avg_fat_percentage": round(row.avg_fat, 2), "avg_resting_bpm": round(row.avg_bpm, 2)})
result_data = {"calories_by_workout": calories_result, "frequency_vs_fat": frequency_fat_result, "duration_vs_bpm": duration_vs_bpm, "experience_health_comparison": exp_health_result}
spark.stop()
return JsonResponse({"status": "success", "data": result_data})
基于大数据的健身房会员锻炼数据分析与可视化系统-结语
🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝
👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!
🍅 ↓↓主页获取源码联系↓↓🍅