计算机大数据毕业设计推荐:基于Hadoop+Spark的健康数据可视化分析系统

58 阅读8分钟

🎓 作者:计算机毕设小月哥 | 软件开发专家

🖥️ 简介:8年计算机软件程序开发经验。精通Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等技术栈。

🛠️ 专业服务 🛠️

  • 需求定制化开发

  • 源码提供与讲解

  • 技术文档撰写(指导计算机毕设选题【新颖+创新】、任务书、开题报告、文献综述、外文翻译等)

  • 项目答辩演示PPT制作

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅

基于大数据的健康与生活方式数据可视化分析系统-功能介绍

基于大数据的健康与生活方式数据可视化分析系统是一套专门针对健康数据进行深度挖掘和可视化展示的综合性平台。该系统采用Hadoop分布式存储架构和Spark大数据处理框架作为核心技术支撑,通过Python和Java双语言开发模式,实现了对海量健康生活方式数据的高效处理和分析。系统前端基于Vue框架结合ElementUI组件库和Echarts图表库,为用户提供直观友好的数据可视化界面,后端采用Django或SpringBoot框架构建RESTful API服务,确保数据传输的稳定性和安全性。系统核心功能涵盖印度居民基础画像分析、城乡生活方式差异对比、工作压力与健康风险行为关联性分析、不同年龄段健康演变趋势以及健康生活方式综合评估五大模块,通过对年龄、性别、城乡分布、吸烟饮酒习惯、饮食结构、体力活动水平、工作压力等多维度数据进行交叉分析,为用户呈现全面的健康生活方式数据洞察,系统运用Spark SQL进行复杂查询处理,结合Pandas和NumPy进行数据清洗和统计计算,最终将分析结果通过多样化的图表形式进行可视化展示,为健康管理和生活方式改善提供数据支撑。

基于大数据的健康与生活方式数据可视化分析系统-选题背景意义

选题背景 随着全球健康意识的不断提升和大数据技术的快速发展,健康数据分析已成为当代社会关注的重要领域。印度作为世界人口大国,其居民的健康状况和生活方式呈现出复杂多样的特征,传统的健康数据收集和分析方法已经无法满足对海量、多维度健康信息的深度挖掘需求。现代社会中,人们的生活节奏加快,工作压力增大,城乡发展差异显著,这些因素都对居民的健康状况和生活方式选择产生了深远影响。传统的健康数据分析往往局限于单一维度的统计描述,缺乏对不同群体、不同地域、不同年龄段之间健康行为差异的深入分析。大数据技术的兴起为解决这一问题提供了新的思路和技术手段,通过Hadoop分布式存储和Spark大数据处理技术,能够高效处理大规模健康数据集,发现传统分析方法难以发现的数据规律和关联关系,为健康管理决策提供更加科学和精准的数据支撑。 选题意义 本课题的研究具有重要的实际应用价值和技术探索意义。从实际应用角度来看,该系统能够帮助健康管理机构和研究人员更好地理解不同人群的健康行为特征,为制定针对性的健康干预策略提供数据依据。通过对城乡差异、年龄分布、工作压力等多维度因素的综合分析,可以识别出高风险人群和关键影响因素,为公共卫生政策的制定提供参考。从技术角度来说,本课题将大数据技术与健康数据分析相结合,展示了Hadoop和Spark技术在实际业务场景中的应用效果,为相关领域的技术实践提供了有价值的参考案例。系统采用的数据可视化技术能够将复杂的统计分析结果以直观的图表形式展现,提高了数据分析结果的可读性和实用性。虽然作为毕业设计项目,系统的规模和复杂度相对有限,但其所体现的技术架构设计思路和业务逻辑处理方法,对于理解大数据技术在健康管理领域的应用具有一定的启发意义,同时也为后续的深入研究和系统优化奠定了基础。

基于大数据的健康与生活方式数据可视化分析系统-技术选型

大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

基于大数据的健康与生活方式数据可视化分析系统-视频展示

基于大数据的健康与生活方式数据可视化分析系统-视频展示

基于大数据的健康与生活方式数据可视化分析系统-图片展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

基于大数据的健康与生活方式数据可视化分析系统-代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, when, sum as spark_sum, avg, desc, asc
import pandas as pd
import numpy as np

spark = SparkSession.builder.appName("HealthDataAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

def analyze_basic_demographics():
    health_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/health_data/health_lifestyle.csv")
    age_groups = health_df.withColumn("age_group", when(col("Age") < 30, "青年").when(col("Age") < 50, "中年").otherwise("中老年"))
    age_distribution = age_groups.groupBy("age_group").agg(count("*").alias("count"), avg("Age").alias("avg_age"))
    age_result = age_distribution.orderBy(desc("count")).collect()
    gender_distribution = health_df.groupBy("Gender").agg(count("*").alias("count")).collect()
    urban_rural_stats = health_df.groupBy("Urban_Rural").agg(count("*").alias("count")).collect()
    smoking_stats = health_df.groupBy("Smoking_Status").agg(count("*").alias("count")).collect()
    alcohol_stats = health_df.groupBy("Alcohol_Consumption").agg(count("*").alias("count")).collect()
    diet_stats = health_df.groupBy("Diet_Type").agg(count("*").alias("count")).collect()
    activity_stats = health_df.groupBy("Physical_Activity").agg(count("*").alias("count")).collect()
    total_records = health_df.count()
    demographics_result = {"total_records": total_records, "age_groups": [(row.age_group, row.count, round(row.avg_age, 1)) for row in age_result], "gender_dist": [(row.Gender, row.count, round(row.count/total_records*100, 2)) for row in gender_distribution], "urban_rural": [(row.Urban_Rural, row.count, round(row.count/total_records*100, 2)) for row in urban_rural_stats], "smoking": [(row.Smoking_Status, row.count, round(row.count/total_records*100, 2)) for row in smoking_stats], "alcohol": [(row.Alcohol_Consumption, row.count, round(row.count/total_records*100, 2)) for row in alcohol_stats], "diet": [(row.Diet_Type, row.count, round(row.count/total_records*100, 2)) for row in diet_stats], "activity": [(row.Physical_Activity, row.count, round(row.count/total_records*100, 2)) for row in activity_stats]}
    return demographics_result

def analyze_urban_rural_differences():
    health_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/health_data/health_lifestyle.csv")
    medicine_preference = health_df.groupBy("Urban_Rural", "Preferred_Medicine").agg(count("*").alias("count")).collect()
    work_stress_comparison = health_df.groupBy("Urban_Rural", "Work_Stress").agg(count("*").alias("count")).collect()
    diet_comparison = health_df.groupBy("Urban_Rural", "Diet_Type").agg(count("*").alias("count")).collect()
    smoking_comparison = health_df.groupBy("Urban_Rural", "Smoking_Status").agg(count("*").alias("count")).collect()
    alcohol_comparison = health_df.groupBy("Urban_Rural", "Alcohol_Consumption").agg(count("*").alias("count")).collect()
    urban_total = health_df.filter(col("Urban_Rural") == "Urban").count()
    rural_total = health_df.filter(col("Urban_Rural") == "Rural").count()
    medicine_analysis = {}
    for row in medicine_preference:
        location = row.Urban_Rural
        medicine = row.Preferred_Medicine
        count = row.count
        total = urban_total if location == "Urban" else rural_total
        percentage = round(count/total*100, 2)
        if location not in medicine_analysis:
            medicine_analysis[location] = {}
        medicine_analysis[location][medicine] = {"count": count, "percentage": percentage}
    stress_analysis = {}
    for row in work_stress_comparison:
        location = row.Urban_Rural
        stress = row.Work_Stress
        count = row.count
        total = urban_total if location == "Urban" else rural_total
        percentage = round(count/total*100, 2)
        if location not in stress_analysis:
            stress_analysis[location] = {}
        stress_analysis[location][stress] = {"count": count, "percentage": percentage}
    risk_behavior_analysis = {"smoking": {}, "alcohol": {}}
    for row in smoking_comparison:
        location = row.Urban_Rural
        smoking = row.Smoking_Status
        count = row.count
        total = urban_total if location == "Urban" else rural_total
        percentage = round(count/total*100, 2)
        if location not in risk_behavior_analysis["smoking"]:
            risk_behavior_analysis["smoking"][location] = {}
        risk_behavior_analysis["smoking"][location][smoking] = {"count": count, "percentage": percentage}
    for row in alcohol_comparison:
        location = row.Urban_Rural
        alcohol = row.Alcohol_Consumption
        count = row.count
        total = urban_total if location == "Urban" else rural_total
        percentage = round(count/total*100, 2)
        if location not in risk_behavior_analysis["alcohol"]:
            risk_behavior_analysis["alcohol"][location] = {}
        risk_behavior_analysis["alcohol"][location][alcohol] = {"count": count, "percentage": percentage}
    comparison_result = {"medicine_preference": medicine_analysis, "work_stress": stress_analysis, "risk_behaviors": risk_behavior_analysis, "urban_total": urban_total, "rural_total": rural_total}
    return comparison_result

def analyze_health_lifestyle_score():
    health_df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/health_data/health_lifestyle.csv")
    health_scored_df = health_df.withColumn("smoking_score", when(col("Smoking_Status") == "Never", 2).when(col("Smoking_Status") == "Formerly", 1).otherwise(0)).withColumn("alcohol_score", when(col("Alcohol_Consumption") == "No", 2).otherwise(0)).withColumn("activity_score", when(col("Physical_Activity") == "High", 3).when(col("Physical_Activity") == "Moderate", 2).when(col("Physical_Activity") == "Low", 1).otherwise(0))
    health_scored_df = health_scored_df.withColumn("total_health_score", col("smoking_score") + col("alcohol_score") + col("activity_score"))
    score_distribution = health_scored_df.groupBy("total_health_score").agg(count("*").alias("count")).orderBy("total_health_score").collect()
    avg_score_by_stress = health_scored_df.groupBy("Work_Stress").agg(avg("total_health_score").alias("avg_score"), count("*").alias("count")).orderBy(desc("avg_score")).collect()
    avg_score_by_location = health_scored_df.groupBy("Urban_Rural").agg(avg("total_health_score").alias("avg_score"), count("*").alias("count")).collect()
    medicine_by_score = health_scored_df.withColumn("score_category", when(col("total_health_score") >= 5, "High").when(col("total_health_score") >= 3, "Medium").otherwise("Low"))
    medicine_score_relation = medicine_by_score.groupBy("score_category", "Preferred_Medicine").agg(count("*").alias("count")).collect()
    total_records = health_scored_df.count()
    score_stats = [(row.total_health_score, row.count, round(row.count/total_records*100, 2)) for row in score_distribution]
    stress_score_stats = [(row.Work_Stress, round(row.avg_score, 2), row.count) for row in avg_score_by_stress]
    location_score_stats = [(row.Urban_Rural, round(row.avg_score, 2), row.count) for row in avg_score_by_location]
    medicine_score_stats = {}
    for row in medicine_score_relation:
        category = row.score_category
        medicine = row.Preferred_Medicine
        count = row.count
        if category not in medicine_score_stats:
            medicine_score_stats[category] = {}
        medicine_score_stats[category][medicine] = count
    comprehensive_result = {"score_distribution": score_stats, "stress_score_relation": stress_score_stats, "location_score_relation": location_score_stats, "medicine_score_relation": medicine_score_stats, "total_records": total_records}
    return comprehensive_result

基于大数据的健康与生活方式数据可视化分析系统-结语

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅