限时分享!《基于大数据的胡润榜企业估值分析系统》完整源码+技术文档

54 阅读9分钟

🎓 作者:计算机毕设小月哥 | 软件开发专家

🖥️ 简介:8年计算机软件程序开发经验。精通Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等技术栈。

🛠️ 专业服务 🛠️

  • 需求定制化开发

  • 源码提供与讲解

  • 技术文档撰写(指导计算机毕设选题【新颖+创新】、任务书、开题报告、文献综述、外文翻译等)

  • 项目答辩演示PPT制作

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅

基于大数据的胡润榜全球企业估值分析与可视化系统-功能介绍

《基于大数据的胡润榜企业估值分析系统》是一个集数据处理、深度分析与可视化展示于一体的综合性大数据应用系统。该系统采用Hadoop+Spark大数据处理框架作为核心技术架构,通过Django后端框架和Vue前端技术栈构建完整的Web应用体系。系统针对胡润榜全球企业数据进行多维度深度挖掘,涵盖全球企业估值分布分析、地理分布特征分析、行业发展态势分析以及企业竞争力分析四大核心模块。在技术实现层面,系统运用Spark SQL进行大规模数据查询处理,结合Pandas和NumPy进行精确的数据科学计算,通过HDFS实现海量数据的分布式存储管理。前端采用ElementUI组件库配合Echarts图表引擎,为用户提供直观美观的数据可视化界面,支持多种图表类型包括柱状图、饼图、散点图、热力图等展示形式。系统整体架构遵循前后端分离设计理念,后端提供RESTful API接口服务,前端通过Ajax异步调用实现数据交互,保证了系统的高性能和良好的用户体验。

基于大数据的胡润榜全球企业估值分析与可视化系统-选题背景意义

选题背景 随着全球经济一体化进程不断深入,跨国企业和独角兽公司的发展态势成为衡量各国经济实力和创新能力的重要指标。胡润研究院作为权威的财富研究机构,其发布的全球企业榜单数据具有极高的参考价值和研究意义。然而,面对海量的企业数据信息,传统的数据处理方法已经无法满足深度分析的需求,特别是在处理多维度、大规模数据时显得力不从心。当前市场上缺乏专门针对胡润榜企业数据进行系统性分析的工具平台,大多数研究仍停留在简单的统计汇总层面,无法深入挖掘数据背后的规律和趋势。大数据技术的快速发展为解决这一问题提供了新的思路和方法,Hadoop生态系统的成熟应用使得处理TB级别的企业数据成为可能,而Spark框架的内存计算能力更是大大提升了数据处理的效率和实时性。 选题意义 本系统的开发具有多重实际价值和应用意义。从学术研究角度来看,系统为经济学、管理学等相关专业的学者提供了一个便捷的数据分析工具,能够帮助研究人员快速获取企业发展的宏观趋势和微观特征,为相关理论研究提供数据支撑。对于投资机构和创业者而言,系统通过对全球企业估值分布、地理聚集特征、行业发展态势的深度分析,可以为投资决策和创业选址提供重要的参考依据。政府部门和政策制定者可以通过系统了解本国企业在全球的竞争地位,制定更加精准的产业政策和发展规划。从技术实践层面来说,系统展示了大数据技术在实际业务场景中的应用价值,为类似的数据分析项目提供了可复制的技术方案。同时,系统的开发过程也验证了Hadoop+Spark技术栈在处理结构化商业数据方面的有效性和可行性,为大数据技术的推广应用积累了宝贵经验。虽然作为一个毕业设计项目,系统在功能完善性和数据规模处理能力方面还有提升空间,但其基本框架和核心功能已经具备了实际应用的基础条件。

基于大数据的胡润榜全球企业估值分析与可视化系统-技术选型

大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

基于大数据的胡润榜全球企业估值分析与可视化系统-视频展示

基于大数据的胡润榜全球企业估值分析与可视化系统-视频展示

基于大数据的胡润榜全球企业估值分析与可视化系统-图片展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

基于大数据的胡润榜全球企业估值分析与可视化系统-代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views import View
import json
import mysql.connector
def global_enterprise_valuation_analysis(request):
    spark = SparkSession.builder.appName("GlobalEnterpriseValuationAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
    df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/hurun_db").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "enterprise_data").option("user", "root").option("password", "password").load()
    valuation_ranges = df.withColumn("valuation_range", when(col("enterprise_valuation") >= 100000000000, "超千亿级").when(col("enterprise_valuation") >= 50000000000, "500-1000亿级").when(col("enterprise_valuation") >= 10000000000, "100-500亿级").when(col("enterprise_valuation") >= 1000000000, "10-100亿级").otherwise("10亿以下"))
    range_analysis = valuation_ranges.groupBy("valuation_range").agg(count("*").alias("enterprise_count"), sum("enterprise_valuation").alias("total_valuation"), avg("enterprise_valuation").alias("avg_valuation")).orderBy(desc("total_valuation"))
    country_analysis = df.withColumn("country", regexp_extract(col("headquarters_location"), r"([^,]+)$", 1)).groupBy("country").agg(count("*").alias("enterprise_count"), sum("enterprise_valuation").alias("total_valuation"), avg("enterprise_valuation").alias("avg_valuation")).orderBy(desc("total_valuation")).limit(20)
    top100_analysis = df.filter(col("ranking") <= 100).agg(sum("enterprise_valuation").alias("top100_valuation"))
    total_valuation = df.agg(sum("enterprise_valuation").alias("total_valuation")).collect()[0]["total_valuation"]
    top100_ratio = top100_analysis.collect()[0]["top100_valuation"] / total_valuation * 100
    industry_concentration = df.groupBy("industry").agg(count("*").alias("enterprise_count"), sum("enterprise_valuation").alias("industry_valuation")).withColumn("valuation_ratio", col("industry_valuation") / total_valuation * 100).orderBy(desc("industry_valuation"))
    hhi_calculation = industry_concentration.withColumn("market_share_squared", pow(col("valuation_ratio"), 2)).agg(sum("market_share_squared").alias("hhi_index")).collect()[0]["hhi_index"]
    range_result = [{"valuation_range": row["valuation_range"], "enterprise_count": row["enterprise_count"], "total_valuation": float(row["total_valuation"]), "avg_valuation": float(row["avg_valuation"])} for row in range_analysis.collect()]
    country_result = [{"country": row["country"], "enterprise_count": row["enterprise_count"], "total_valuation": float(row["total_valuation"]), "avg_valuation": float(row["avg_valuation"])} for row in country_analysis.collect()]
    industry_result = [{"industry": row["industry"], "enterprise_count": row["enterprise_count"], "industry_valuation": float(row["industry_valuation"]), "valuation_ratio": float(row["valuation_ratio"])} for row in industry_concentration.collect()]
    spark.stop()
    return JsonResponse({"status": "success", "data": {"valuation_ranges": range_result, "country_analysis": country_result, "top100_concentration_ratio": round(top100_ratio, 2), "industry_concentration": industry_result, "hhi_index": round(hhi_index, 4)}})
def geographic_distribution_analysis(request):
    spark = SparkSession.builder.appName("GeographicDistributionAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").getOrCreate()
    df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/hurun_db").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "enterprise_data").option("user", "root").option("password", "password").load()
    city_analysis = df.withColumn("city", regexp_extract(col("headquarters_location"), r"^([^,]+)", 1)).groupBy("city").agg(count("*").alias("enterprise_count"), sum("enterprise_valuation").alias("city_total_valuation"), avg("enterprise_valuation").alias("city_avg_valuation")).orderBy(desc("enterprise_count"))
    city_clustering_coefficient = city_analysis.withColumn("clustering_score", col("enterprise_count") * log(col("city_avg_valuation") + 1)).orderBy(desc("clustering_score")).limit(30)
    china_us_comparison = df.withColumn("country", regexp_extract(col("headquarters_location"), r"([^,]+)$", 1)).filter((col("country") == "中国") | (col("country") == "美国")).withColumn("city", regexp_extract(col("headquarters_location"), r"^([^,]+)", 1)).groupBy("country", "city").agg(count("*").alias("enterprise_count"), sum("enterprise_valuation").alias("total_valuation")).orderBy("country", desc("total_valuation"))
    continent_mapping = {"中国": "亚洲", "美国": "北美洲", "英国": "欧洲", "德国": "欧洲", "法国": "欧洲", "日本": "亚洲", "韩国": "亚洲", "印度": "亚洲", "加拿大": "北美洲", "澳大利亚": "大洋洲", "巴西": "南美洲", "以色列": "亚洲", "新加坡": "亚洲", "瑞士": "欧洲", "荷兰": "欧洲"}
    continent_analysis = df.withColumn("country", regexp_extract(col("headquarters_location"), r"([^,]+)$", 1)).withColumn("continent", when(col("country").isin(list(continent_mapping.keys())), lit("已知大洲")).otherwise("其他")).groupBy("continent").agg(count("*").alias("enterprise_count"), sum("enterprise_valuation").alias("continent_valuation"))
    city_industry_specialization = df.withColumn("city", regexp_extract(col("headquarters_location"), r"^([^,]+)", 1)).groupBy("city", "industry").agg(count("*").alias("industry_count"), sum("enterprise_valuation").alias("industry_valuation")).withColumn("specialization_index", col("industry_count") * col("industry_valuation") / 1000000000).orderBy("city", desc("specialization_index"))
    gini_coefficient_data = city_analysis.select("city_total_valuation").rdd.map(lambda row: row[0]).collect()
    sorted_valuations = sorted(gini_coefficient_data)
    n = len(sorted_valuations)
    cumulative_sum = np.cumsum(sorted_valuations)
    total_sum = cumulative_sum[-1]
    gini_coefficient = (2 * sum((i + 1) * val for i, val in enumerate(sorted_valuations)) / (n * total_sum)) - (n + 1) / n
    city_result = [{"city": row["city"], "enterprise_count": row["enterprise_count"], "total_valuation": float(row["city_total_valuation"]), "avg_valuation": float(row["city_avg_valuation"])} for row in city_clustering_coefficient.collect()]
    china_us_result = [{"country": row["country"], "city": row["city"], "enterprise_count": row["enterprise_count"], "total_valuation": float(row["total_valuation"])} for row in china_us_comparison.collect()]
    continent_result = [{"continent": row["continent"], "enterprise_count": row["enterprise_count"], "continent_valuation": float(row["continent_valuation"])} for row in continent_analysis.collect()]
    city_industry_result = [{"city": row["city"], "industry": row["industry"], "industry_count": row["industry_count"], "industry_valuation": float(row["industry_valuation"]), "specialization_index": float(row["specialization_index"])} for row in city_industry_specialization.collect()]
    spark.stop()
    return JsonResponse({"status": "success", "data": {"city_clustering": city_result, "china_us_comparison": china_us_result, "continent_distribution": continent_result, "city_industry_specialization": city_industry_result, "geographic_gini_coefficient": round(gini_coefficient, 4)}})
def industry_development_analysis(request):
    spark = SparkSession.builder.appName("IndustryDevelopmentAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.dynamicAllocation.enabled", "true").getOrCreate()
    df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/hurun_db").option("driver", "com.mysql.cj.jdbc.Driver").option("dbtable", "enterprise_data").option("user", "root").option("password", "password").load()
    industry_scale_analysis = df.groupBy("industry").agg(count("*").alias("enterprise_count"), sum("enterprise_valuation").alias("total_industry_valuation"), avg("enterprise_valuation").alias("avg_industry_valuation"), stddev("enterprise_valuation").alias("valuation_std"), min("enterprise_valuation").alias("min_valuation"), max("enterprise_valuation").alias("max_valuation")).orderBy(desc("total_industry_valuation"))
    industry_variance_analysis = industry_scale_analysis.withColumn("coefficient_of_variation", col("valuation_std") / col("avg_industry_valuation")).withColumn("valuation_range", col("max_valuation") - col("min_valuation")).orderBy(desc("coefficient_of_variation"))
    emerging_tech_industries = ["人工智能", "区块链", "云计算", "大数据", "物联网", "新能源", "生物科技", "自动驾驶", "虚拟现实", "金融科技"]
    emerging_analysis = df.filter(col("industry").isin(emerging_tech_industries)).groupBy("industry").agg(count("*").alias("emerging_count"), sum("enterprise_valuation").alias("emerging_valuation"), avg("enterprise_valuation").alias("emerging_avg_valuation")).orderBy(desc("emerging_valuation"))
    traditional_industries = ["制造业", "零售业", "房地产", "金融服务", "传统能源", "汽车制造", "食品饮料", "纺织服装", "建筑工程", "交通运输"]
    traditional_analysis = df.filter(col("industry").isin(traditional_industries)).groupBy("industry").agg(count("*").alias("traditional_count"), sum("enterprise_valuation").alias("traditional_valuation"), avg("enterprise_valuation").alias("traditional_avg_valuation")).orderBy(desc("traditional_valuation"))
    industry_growth_potential = industry_scale_analysis.withColumn("growth_potential_score", (col("avg_industry_valuation") * 0.4) + (col("enterprise_count") * 1000000000 * 0.3) + ((col("max_valuation") - col("avg_industry_valuation")) * 0.3)).orderBy(desc("growth_potential_score"))
    industry_maturity_index = industry_scale_analysis.withColumn("maturity_index", col("enterprise_count") / (col("valuation_std") / col("avg_industry_valuation") + 1)).withColumn("market_saturation", when(col("maturity_index") > 10, "高度成熟").when(col("maturity_index") > 5, "相对成熟").otherwise("发展期")).orderBy(desc("maturity_index"))
    total_market_valuation = df.agg(sum("enterprise_valuation")).collect()[0][0]
    industry_market_share = industry_scale_analysis.withColumn("market_share_percentage", col("total_industry_valuation") / total_market_valuation * 100).orderBy(desc("market_share_percentage"))
    innovation_index_calculation = df.join(industry_scale_analysis.select("industry", "avg_industry_valuation"), "industry").withColumn("innovation_score", when(col("enterprise_valuation") > col("avg_industry_valuation"), col("enterprise_valuation") / col("avg_industry_valuation")).otherwise(0)).groupBy("industry").agg(avg("innovation_score").alias("industry_innovation_index")).orderBy(desc("industry_innovation_index"))
    industry_result = [{"industry": row["industry"], "enterprise_count": row["enterprise_count"], "total_valuation": float(row["total_industry_valuation"]), "avg_valuation": float(row["avg_industry_valuation"]), "valuation_std": float(row["valuation_std"]) if row["valuation_std"] else 0} for row in industry_scale_analysis.collect()]
    emerging_result = [{"industry": row["industry"], "enterprise_count": row["emerging_count"], "total_valuation": float(row["emerging_valuation"]), "avg_valuation": float(row["emerging_avg_valuation"])} for row in emerging_analysis.collect()]
    traditional_result = [{"industry": row["industry"], "enterprise_count": row["traditional_count"], "total_valuation": float(row["traditional_valuation"]), "avg_valuation": float(row["traditional_avg_valuation"])} for row in traditional_analysis.collect()]
    growth_potential_result = [{"industry": row["industry"], "growth_potential_score": float(row["growth_potential_score"])} for row in industry_growth_potential.collect()]
    maturity_result = [{"industry": row["industry"], "maturity_index": float(row["maturity_index"]), "market_saturation": row["market_saturation"]} for row in industry_maturity_index.collect()]
    spark.stop()
    return JsonResponse({"status": "success", "data": {"industry_scale_analysis": industry_result, "emerging_tech_analysis": emerging_result, "traditional_industry_analysis": traditional_result, "growth_potential_ranking": growth_potential_result, "industry_maturity_assessment": maturity_result}})

基于大数据的胡润榜全球企业估值分析与可视化系统-结语

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅