计算机毕设选题:基于Spark+HDFS的旅游大数据分析系统开发指南

61 阅读8分钟

🎓 作者:计算机毕设小月哥 | 软件开发专家

🖥️ 简介:8年计算机软件程序开发经验。精通Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等技术栈。

🛠️ 专业服务 🛠️

  • 需求定制化开发

  • 源码提供与讲解

  • 技术文档撰写(指导计算机毕设选题【新颖+创新】、任务书、开题报告、文献综述、外文翻译等)

  • 项目答辩演示PPT制作

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅

基于大数据的国内旅游景点游客数据分析系统-功能介绍

基于Spark+HDFS的旅游大数据分析系统是一个针对国内旅游景点游客行为进行深度挖掘的综合性数据分析平台。系统运用Hadoop分布式文件系统HDFS进行海量旅游数据的存储管理,结合Spark大数据计算框架实现高效的数据处理和分析计算。前端采用Vue+ElementUI+Echarts技术栈构建用户交互界面,后端基于Django框架提供RESTful API服务,数据库使用MySQL存储结构化数据。系统从游客多维画像分析、旅游消费行为分析、景点吸引力与满意度分析、旅游时序与外部环境影响分析、全国区域旅游市场格局分析等五个维度出发,通过Spark SQL进行复杂查询分析,利用Pandas和NumPy进行数据清洗和统计计算,最终通过可视化图表展示分析结果。系统能够有效处理大规模旅游数据,为旅游行业的决策制定、市场营销、资源配置等提供科学的数据支撑,同时为相关研究人员和管理人员提供便捷的数据分析工具。

基于大数据的国内旅游景点游客数据分析系统-选题背景意义

选题背景 随着国民经济水平的持续提升和假期制度的不断完善,国内旅游市场呈现出蓬勃发展的态势,旅游已经从少数人的奢侈消费转变为大众化的生活方式。各类在线旅游平台、景区管理系统、移动支付平台等数字化服务的普及应用,使得旅游活动中产生了大量的数字化痕迹和行为数据。这些数据涵盖了游客的出行轨迹、消费记录、评价反馈、住宿选择等多个维度,形成了规模庞大且结构复杂的旅游大数据资源。传统的数据处理方式已经无法满足对如此海量、多样化数据的高效分析需求,而大数据技术的成熟发展为解决这一挑战提供了有力支撑。Hadoop生态系统中的HDFS分布式存储和Spark内存计算引擎的结合,能够有效应对旅游数据的存储和计算挑战。当前旅游行业亟需借助先进的大数据分析技术,从海量的旅游数据中挖掘出有价值的商业洞察和市场规律。 选题意义 本课题通过构建基于Spark+HDFS的旅游大数据分析系统,能够为旅游行业的数字化转型和智能化发展提供技术支撑和实践参考。从实际应用角度来看,系统能够帮助旅游企业和景区管理者更好地了解游客需求和行为特征,为产品设计、营销策略制定、服务优化等决策提供数据依据。通过多维度的数据分析,可以识别出高价值客户群体,优化资源配置,提升运营效率和用户体验。对于地方旅游管理部门而言,系统提供的区域旅游市场分析能够辅助制定更加精准的旅游发展规划和政策措施。从技术层面来说,本课题探索了大数据技术在旅游垂直领域的具体应用实践,验证了Spark+HDFS技术架构在处理旅游业务数据方面的可行性和有效性,为类似的行业大数据分析项目提供了可借鉴的技术方案。从学术价值角度考虑,课题将理论知识与实际业务场景相结合,有助于推动大数据分析方法在旅游研究领域的应用和发展,为相关研究工作提供数据处理和分析工具支持。

基于大数据的国内旅游景点游客数据分析系统-技术选型

大数据框架:Hadoop+Spark(本次没用Hive,支持定制) 开发语言:Python+Java(两个版本都支持) 后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持) 前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery 详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy 数据库:MySQL

基于大数据的国内旅游景点游客数据分析系统-视频展示

基于大数据的国内旅游景点游客数据分析系统-视频展示

基于大数据的国内旅游景点游客数据分析系统-图片展示

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

基于大数据的国内旅游景点游客数据分析系统-代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans
import pandas as pd
import numpy as np

spark = SparkSession.builder.appName("TourismDataAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

def tourist_portrait_analysis():
    tourism_df = spark.read.parquet("hdfs://localhost:9000/tourism_data/tourist_records")
    age_groups = tourism_df.withColumn("age_group", 
                                     when(col("visitor_age") < 25, "青年")
                                     .when(col("visitor_age") < 45, "中年")
                                     .otherwise("老年"))
    age_distribution = age_groups.groupBy("age_group").agg(
        count("visitor_id").alias("visitor_count"),
        avg("consumption_amount").alias("avg_consumption"),
        avg("satisfaction_score").alias("avg_satisfaction")
    ).orderBy(desc("visitor_count"))
    province_analysis = tourism_df.groupBy("source_province").agg(
        count("visitor_id").alias("total_visitors"),
        avg("consumption_amount").alias("province_avg_consumption"),
        countDistinct("attraction_name").alias("visited_attractions")
    ).orderBy(desc("total_visitors")).limit(10)
    gender_consumption = tourism_df.groupBy("visitor_gender").agg(
        count("visitor_id").alias("gender_count"),
        avg("consumption_amount").alias("gender_avg_consumption"),
        sum("consumption_amount").alias("total_consumption")
    )
    travel_mode_preference = tourism_df.groupBy("visitor_age", "travel_mode").agg(
        count("visitor_id").alias("mode_count")
    ).withColumn("age_group", 
                when(col("visitor_age") < 30, "年轻群体")
                .when(col("visitor_age") < 50, "中年群体")
                .otherwise("中老年群体"))
    trip_type_analysis = tourism_df.withColumn("trip_type",
        when(col("source_province") == col("attraction_province"), "省内游")
        .otherwise("跨省游")
    ).groupBy("trip_type").agg(
        count("visitor_id").alias("trip_count"),
        avg("duration_days").alias("avg_duration"),
        avg("consumption_amount").alias("avg_trip_consumption")
    )
    duration_distribution = tourism_df.withColumn("duration_category",
        when(col("duration_days") <= 2, "短途游(1-2天)")
        .when(col("duration_days") <= 5, "中途游(3-5天)")
        .otherwise("长途游(6天以上)")
    ).groupBy("duration_category").agg(
        count("visitor_id").alias("duration_count"),
        avg("consumption_amount").alias("duration_avg_consumption")
    ).orderBy("duration_category")
    results = {
        "age_distribution": age_distribution.collect(),
        "top_provinces": province_analysis.collect(),
        "gender_analysis": gender_consumption.collect(),
        "travel_preferences": travel_mode_preference.collect(),
        "trip_types": trip_type_analysis.collect(),
        "duration_stats": duration_distribution.collect()
    }
    return results

def consumption_behavior_analysis():
    tourism_df = spark.read.parquet("hdfs://localhost:9000/tourism_data/tourist_records")
    consumption_levels = tourism_df.withColumn("consumption_level",
        when(col("consumption_amount") < 1000, "经济型")
        .when(col("consumption_amount") < 3000, "舒适型")
        .when(col("consumption_amount") < 5000, "高端型")
        .otherwise("奢华型")
    ).groupBy("consumption_level").agg(
        count("visitor_id").alias("level_count"),
        avg("consumption_amount").alias("level_avg_amount"),
        avg("satisfaction_score").alias("level_satisfaction")
    ).orderBy("consumption_level")
    province_consumption_ranking = tourism_df.groupBy("source_province").agg(
        count("visitor_id").alias("province_visitors"),
        avg("consumption_amount").alias("province_per_capita"),
        sum("consumption_amount").alias("province_total_consumption"),
        stddev("consumption_amount").alias("consumption_stddev")
    ).filter(col("province_visitors") >= 100).orderBy(desc("province_per_capita"))
    travel_mode_consumption = tourism_df.groupBy("travel_mode").agg(
        count("visitor_id").alias("mode_visitors"),
        avg("consumption_amount").alias("mode_avg_consumption"),
        min("consumption_amount").alias("mode_min_consumption"),
        max("consumption_amount").alias("mode_max_consumption"),
        percentile_approx("consumption_amount", 0.5).alias("mode_median_consumption")
    ).orderBy(desc("mode_avg_consumption"))
    feature_columns = ["consumption_amount", "duration_days", "satisfaction_score"]
    assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
    feature_data = assembler.transform(tourism_df.na.drop())
    normalized_data = feature_data.withColumn("normalized_consumption", 
        (col("consumption_amount") - feature_data.agg(avg("consumption_amount")).collect()[0][0]) / 
        feature_data.agg(stddev("consumption_amount")).collect()[0][0])
    kmeans = KMeans(k=4, featuresCol="features", predictionCol="cluster")
    model = kmeans.fit(normalized_data)
    clustered_data = model.transform(normalized_data)
    cluster_analysis = clustered_data.groupBy("cluster").agg(
        count("visitor_id").alias("cluster_size"),
        avg("consumption_amount").alias("cluster_avg_consumption"),
        avg("duration_days").alias("cluster_avg_duration"),
        avg("satisfaction_score").alias("cluster_avg_satisfaction")
    ).orderBy("cluster")
    daily_consumption = tourism_df.withColumn("daily_consumption", 
        col("consumption_amount") / col("duration_days")
    ).groupBy("source_province").agg(
        avg("daily_consumption").alias("province_daily_avg"),
        count("visitor_id").alias("daily_sample_size")
    ).filter(col("daily_sample_size") >= 50).orderBy(desc("province_daily_avg"))
    results = {
        "consumption_levels": consumption_levels.collect(),
        "province_ranking": province_consumption_ranking.collect(),
        "mode_comparison": travel_mode_consumption.collect(),
        "customer_clusters": cluster_analysis.collect(),
        "daily_consumption": daily_consumption.collect()
    }
    return results

def attraction_satisfaction_analysis():
    tourism_df = spark.read.parquet("hdfs://localhost:9000/tourism_data/tourist_records")
    attraction_sales_ranking = tourism_df.groupBy("attraction_name", "attraction_type").agg(
        sum("attraction_sales").alias("total_sales"),
        count("visitor_id").alias("visitor_count"),
        avg("satisfaction_score").alias("attraction_satisfaction"),
        avg("ticket_price").alias("avg_ticket_price"),
        avg("consumption_amount").alias("attraction_avg_consumption")
    ).orderBy(desc("total_sales")).limit(15)
    attraction_type_satisfaction = tourism_df.groupBy("attraction_type").agg(
        count("visitor_id").alias("type_visitors"),
        avg("satisfaction_score").alias("type_avg_satisfaction"),
        stddev("satisfaction_score").alias("satisfaction_stddev"),
        min("satisfaction_score").alias("type_min_satisfaction"),
        max("satisfaction_score").alias("type_max_satisfaction")
    ).orderBy(desc("type_avg_satisfaction"))
    price_satisfaction_correlation = tourism_df.select("ticket_price", "satisfaction_score").na.drop()
    price_ranges = price_satisfaction_correlation.withColumn("price_range",
        when(col("ticket_price") < 50, "低价(0-50元)")
        .when(col("ticket_price") < 100, "中价(50-100元)")
        .when(col("ticket_price") < 200, "高价(100-200元)")
        .otherwise("超高价(200元以上)")
    ).groupBy("price_range").agg(
        count("satisfaction_score").alias("price_sample_count"),
        avg("satisfaction_score").alias("price_avg_satisfaction"),
        avg("ticket_price").alias("range_avg_price")
    ).orderBy("price_range")
    rating_satisfaction = tourism_df.filter(col("attraction_rating").isNotNull()).groupBy("attraction_rating").agg(
        count("visitor_id").alias("rating_visitors"),
        avg("satisfaction_score").alias("rating_avg_satisfaction"),
        avg("ticket_price").alias("rating_avg_price"),
        avg("consumption_amount").alias("rating_avg_consumption")
    ).orderBy(desc("attraction_rating"))
    sentiment_distribution = tourism_df.filter(col("sentiment_polarity").isNotNull()).withColumn("sentiment_category",
        when(col("sentiment_polarity") > 0.1, "正面")
        .when(col("sentiment_polarity") < -0.1, "负面")
        .otherwise("中性")
    ).groupBy("sentiment_category", "attraction_type").agg(
        count("visitor_id").alias("sentiment_count")
    ).orderBy("attraction_type", "sentiment_category")
    attraction_performance = tourism_df.groupBy("attraction_name").agg(
        count("visitor_id").alias("total_visitors"),
        avg("satisfaction_score").alias("overall_satisfaction"),
        sum("attraction_sales").alias("revenue"),
        avg("sentiment_polarity").alias("avg_sentiment")
    ).filter(col("total_visitors") >= 100).orderBy(desc("overall_satisfaction"))
    results = {
        "top_attractions": attraction_sales_ranking.collect(),
        "type_satisfaction": attraction_type_satisfaction.collect(),
        "price_satisfaction": price_ranges.collect(),
        "rating_analysis": rating_satisfaction.collect(),
        "sentiment_stats": sentiment_distribution.collect(),
        "performance_ranking": attraction_performance.collect()
    }
    return results

基于大数据的国内旅游景点游客数据分析系统-结语

🌟 欢迎:点赞 👍 收藏 ⭐ 评论 📝

👇🏻 精选专栏推荐 👇🏻 欢迎订阅关注!

大数据实战项目

PHP|C#.NET|Golang实战项目

微信小程序|安卓实战项目

Python实战项目

Java实战项目

🍅 ↓↓主页获取源码联系↓↓🍅