一、个人简介
- 💖💖作者:计算机编程果茶熊
- 💙💙个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
- 💛💛想说的话:感谢大家的关注与支持!
- 💜💜
- 网站实战项目
- 安卓/小程序实战项目
- 大数据实战项目
- 计算机毕业设计选题
- 💕💕文末获取源码联系计算机编程果茶熊
二、系统介绍
- 大数据框架:Hadoop+Spark(Hive需要定制修改)
- 开发语言:Java+Python(两个版本都支持)
- 数据库:MySQL
- 后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django(两个版本都支持)
- 前端:Vue+Echarts+HTML+CSS+JavaScript+jQuery
基于大数据的教育与职业成功关系可视化分析系统是一套专门针对教育背景与职业成就关联性研究的综合性分析平台。系统采用Hadoop+Spark大数据处理架构,结合Python数据科学生态和Spring Boot微服务框架,构建了完整的数据采集、处理、分析和可视化流水线。系统核心功能涵盖教育与职业数据管理、大屏可视化展示、教育背景影响分析、职业技能回报分析、职场群体差异分析以及职业成功要素分析等六大模块。通过Spark SQL进行大规模数据查询,利用Pandas和NumPy进行数据预处理和统计分析,最终通过Vue+ElementUI+Echarts技术栈实现交互式数据可视化。系统能够处理海量教育和职业数据,深度挖掘不同教育背景对职业发展轨迹的影响规律,为教育政策制定和个人职业规划提供数据支撑。整个系统采用前后端分离架构,支持多用户并发访问,具备良好的扩展性和维护性。
三、基于大数据的教育与职业成功关系可视化分析系统-视频解说
2026届注意:这种大数据教育与职业成功关系可视化分析系统正成为毕设热门
四、基于大数据的教育与职业成功关系可视化分析系统-功能展示
五、基于大数据的教育与职业成功关系可视化分析系统-代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, sum, when, desc, asc
from pyspark.sql.types import *
import pandas as pd
import numpy as np
from datetime import datetime
import json
spark = SparkSession.builder.appName("EducationCareerAnalysis").master("local[*]").getOrCreate()
def education_background_impact_analysis(data_path):
education_df = spark.read.csv(data_path + "/education_data.csv", header=True, inferSchema=True)
career_df = spark.read.csv(data_path + "/career_data.csv", header=True, inferSchema=True)
joined_df = education_df.join(career_df, on="person_id", how="inner")
degree_impact = joined_df.groupBy("degree_level").agg(
avg("salary").alias("avg_salary"),
avg("promotion_count").alias("avg_promotions"),
count("person_id").alias("sample_count"),
avg("job_satisfaction").alias("avg_satisfaction")
).orderBy(desc("avg_salary"))
major_impact = joined_df.groupBy("major_category").agg(
avg("salary").alias("avg_salary"),
avg("career_growth_rate").alias("avg_growth"),
count("person_id").alias("sample_count")
).orderBy(desc("avg_salary"))
school_tier_impact = joined_df.groupBy("school_tier").agg(
avg("starting_salary").alias("avg_starting_salary"),
avg("current_salary").alias("avg_current_salary"),
avg("years_to_promotion").alias("avg_promotion_years"),
count("person_id").alias("sample_count")
).orderBy(desc("avg_current_salary"))
education_duration_analysis = joined_df.groupBy("education_years").agg(
avg("salary").alias("avg_salary"),
avg("skill_score").alias("avg_skill_score"),
count("person_id").alias("sample_count")
).orderBy("education_years")
result_dict = {
"degree_impact": [row.asDict() for row in degree_impact.collect()],
"major_impact": [row.asDict() for row in major_impact.collect()],
"school_tier_impact": [row.asDict() for row in school_tier_impact.collect()],
"education_duration": [row.asDict() for row in education_duration_analysis.collect()]
}
return json.dumps(result_dict)
def career_skill_return_analysis(data_path):
skill_df = spark.read.csv(data_path + "/skill_data.csv", header=True, inferSchema=True)
career_df = spark.read.csv(data_path + "/career_data.csv", header=True, inferSchema=True)
skill_career_df = skill_df.join(career_df, on="person_id", how="inner")
technical_skills_return = skill_career_df.filter(col("skill_category") == "technical").groupBy("skill_name").agg(
avg("salary").alias("avg_salary"),
avg("promotion_speed").alias("avg_promotion_speed"),
count("person_id").alias("skill_holders"),
avg("job_market_demand").alias("avg_market_demand")
).orderBy(desc("avg_salary"))
soft_skills_return = skill_career_df.filter(col("skill_category") == "soft").groupBy("skill_name").agg(
avg("leadership_score").alias("avg_leadership"),
avg("team_performance").alias("avg_team_performance"),
avg("salary").alias("avg_salary"),
count("person_id").alias("skill_holders")
).orderBy(desc("avg_salary"))
skill_combination_analysis = skill_career_df.groupBy("person_id").agg(
count("skill_name").alias("total_skills"),
avg("skill_proficiency").alias("avg_proficiency"),
sum(when(col("skill_category") == "technical", 1).otherwise(0)).alias("technical_count"),
sum(when(col("skill_category") == "soft", 1).otherwise(0)).alias("soft_count")
).join(career_df.select("person_id", "salary", "career_level"), on="person_id")
skill_roi_analysis = skill_combination_analysis.withColumn("skill_roi",
col("salary") / (col("total_skills") + 1)).orderBy(desc("skill_roi"))
industry_skill_demand = skill_career_df.groupBy("industry", "skill_name").agg(
count("person_id").alias("demand_count"),
avg("salary").alias("avg_industry_salary")
).orderBy("industry", desc("demand_count"))
result_dict = {
"technical_skills": [row.asDict() for row in technical_skills_return.limit(20).collect()],
"soft_skills": [row.asDict() for row in soft_skills_return.limit(15).collect()],
"skill_combination": [row.asDict() for row in skill_roi_analysis.limit(100).collect()],
"industry_demand": [row.asDict() for row in industry_skill_demand.collect()]
}
return json.dumps(result_dict)
def workplace_group_difference_analysis(data_path):
demographic_df = spark.read.csv(data_path + "/demographic_data.csv", header=True, inferSchema=True)
career_df = spark.read.csv(data_path + "/career_data.csv", header=True, inferSchema=True)
workplace_df = demographic_df.join(career_df, on="person_id", how="inner")
gender_analysis = workplace_df.groupBy("gender", "industry").agg(
avg("salary").alias("avg_salary"),
avg("promotion_count").alias("avg_promotions"),
avg("leadership_positions").alias("avg_leadership_roles"),
count("person_id").alias("group_size")
).orderBy("industry", "gender")
age_group_analysis = workplace_df.withColumn("age_group",
when(col("age") < 25, "under_25")
.when(col("age") < 35, "25_to_35")
.when(col("age") < 45, "35_to_45")
.otherwise("over_45")
).groupBy("age_group").agg(
avg("salary").alias("avg_salary"),
avg("job_satisfaction").alias("avg_satisfaction"),
avg("work_life_balance").alias("avg_work_life_balance"),
count("person_id").alias("group_size")
).orderBy("age_group")
geographic_analysis = workplace_df.groupBy("location", "company_size").agg(
avg("salary").alias("avg_salary"),
avg("cost_of_living_adjusted_salary").alias("avg_adjusted_salary"),
avg("career_growth_opportunities").alias("avg_growth_opportunities"),
count("person_id").alias("group_size")
).orderBy("location", "company_size")
experience_level_analysis = workplace_df.groupBy("experience_level", "education_level").agg(
avg("salary").alias("avg_salary"),
avg("job_switching_frequency").alias("avg_job_switches"),
avg("skill_development_score").alias("avg_skill_development"),
count("person_id").alias("group_size")
).orderBy("experience_level", "education_level")
career_trajectory_comparison = workplace_df.groupBy("career_path_type").agg(
avg("years_to_senior_level").alias("avg_years_to_senior"),
avg("total_career_earnings").alias("avg_total_earnings"),
avg("job_stability_score").alias("avg_stability"),
count("person_id").alias("path_followers")
).orderBy(desc("avg_total_earnings"))
result_dict = {
"gender_differences": [row.asDict() for row in gender_analysis.collect()],
"age_group_differences": [row.asDict() for row in age_group_analysis.collect()],
"geographic_differences": [row.asDict() for row in geographic_analysis.collect()],
"experience_differences": [row.asDict() for row in experience_level_analysis.collect()],
"career_trajectory": [row.asDict() for row in career_trajectory_comparison.collect()]
}
return json.dumps(result_dict)
六、基于大数据的教育与职业成功关系可视化分析系统-文档展示
七、END
- 💛💛想说的话:感谢大家的关注与支持!
- 💜💜
- 网站实战项目
- 安卓/小程序实战项目
- 大数据实战项目
- 计算机毕业设计选题
- 💕💕文末获取源码联系计算机编程果茶熊